
Non-stationary response statistics of nonlinear oscillators with fractional 

derivative elements under evolutionary stochastic excitation

Introduction
A novel approximate technique for determining the non-stationary response amplitude

probability density function (PDF) of nonlinear / hysteretic oscillators endowed with

fractional derivative elements and subjected to evolutionary stochastic excitation is

developed. Specifically, resorting to a stochastic linearization / averaging treatment of

the problem yields a first-order stochastic differential equation governing the oscillator

response amplitude. Next, assuming a time-dependent PDF of the Rayleigh kind for the

response amplitude, the associated Fokker-Planck partial differential equation is solved

for determining the oscillator non-stationary response amplitude PDF in closed-form

and at a minimal computational cost. An additional advantage of the technique is that it

can handle arbitrary forms of the excitation evolutionary power spectrum, even of the

non-separable kind.
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Mathematical formulation
A nonlinear oscillator with fractional derivative terms is considered, whose governing

equation of motion is given by

ሷ𝑥 𝑡 + 𝛽𝒟0,𝑡
𝛼 𝑥 𝑡 + 𝑧 𝑡, 𝑥, ሶ𝑥 = 𝑤 𝑡

where 𝑧 𝑡, 𝑥, ሶ𝑥 represents an arbitrary nonlinear function that can also account for

hysteretic behaviors; and 𝑤(𝑡) denotes a Gaussian, zero-mean, non-stationary

stochastic process with an evolutionary broad-band power spectrum 𝑆(𝜔, 𝑡). Further, 𝛽
is a coefficient and 𝒟0,𝑡

𝛼 𝑥 𝑡 denotes a Caputo fractional derivative defined as
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for 0 < 𝛼 < 1. Resorting to the assumption of light damping for the oscillator, it can be

argued that it exhibits a pseudo-harmonic behavior, where the oscillator response

amplitude 𝐴(𝑡) and phase 𝜓(𝑡) are considered to be slowly varying functions with

respect to time, and approximately constant over one cycle of oscillation. Application of

the statistical linearization methodology results to the equivalent linear oscillator

ሷ𝑥 𝑡 + 𝛽 + 𝛽 𝐴 ሶ𝑥 𝑡 + 𝜔2 𝐴 𝑥 𝑡 = 𝑤(𝑡)

and an error minimization procedure in the mean square sense yields the equivalent

linear amplitude-dependent damping and stiffness coefficients 𝛽 𝐴 and 𝜔2 𝐴 ,

respectively.

A stochastic averaging technique can be applied to the linearized system with the aim of

reducing its order, and potentially its complexity from a solution perspective. This yields

a first-order stochastic differential equation for the response amplitude 𝐴(𝑡). The

corresponding Fokker-Planck partial differential equation governing the evolution in

time of the response amplitude PDF is given by
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Motivated by the solution to the Fokker-Planck equation in the stationary case, a novel

approximate analytical solution is developed for the non-stationary response amplitude

PDF 𝑝(𝐴, 𝑡) of the general nonlinear oscillator. This takes the form
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where 𝑐 𝑡 is a time-dependent coefficient to be determined. Evaluating the second

moment of the oscillator response yields the oscillator non-stationary response variance
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Numerical example
The bilinear hysteretic nonlinear oscillator with fractional derivative elements is

considered for assessing the reliability of the developed technique. The initially at rest

oscillator, is subjected to non-stationary stochastic excitation described by the non-

separable evolutionary power spectrum
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Denoting by 𝑥⋆ the critical value of the displacement at which the yield occurs, and by

𝜔0 the oscillator natural frequency corresponding to the primary elastic slope, the non-

dimensional displacement y =
x

𝑥⋆
and time quantity 𝜏 = 𝜔0𝑡 are employed. The

restoring force of the oscillator becomes

𝑧 𝑡, 𝑦, ሶ𝑦 = 𝛾𝑦 + 1 − 𝛾 𝑧0

where 𝛾 denotes the post- to pre-yield stiffness ratio, and z0 is the hysteretic force

corresponding to the elasto-plastic characteristic, described by the first order differential

equation

ሶ𝑧0 = ሶ𝑦 1 − 𝐻 ሶ𝑦 𝐻 𝑧0 − 1 − 𝐻 − ሶ𝑦 𝐻 −𝑧0 − 1

Non-stationary response 

variance of a bilinear 

hysteretic oscillator (𝛾 =
0.06) with fractional 

derivative order 𝛼 = 0.5

𝑆 𝜔, 𝑡 comprises some of the main characteristics of seismic shaking, such as

decreasing of the dominant frequency with time.

The closed-form expression for determining the non-stationary response amplitude PDF

𝑝(𝐴, 𝑡) is also assessed.

The excitation and system parameter values used are: 𝑆0 = 0.08 , 𝑐0 = 0.12,
𝜔0 = 2.34, 𝛽 = 0.1, 𝛾 = 0.06.

Non-stationary response amplitude PDF of a bilinear hysteretic oscillator (𝛾 = 0.06) 

with fractional derivative order 𝛼 = 0.5 : analytical PDF (left); MCS-based estimate 

(10,000 realizations)(right)

Analytical vis-à-vis MCS-based 

(10,000 realizations) response 

amplitude PDFs of a bilinear 

hysteretic oscillator (𝛾 = 0.06) with 

fractional derivative order 𝛼 = 0.5, 

plotted for various time instants


