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Complex systems, such as turbines, industrial plants and infrastructure networks are of paramount 
importance to modern communities.  However, these systems are subject to a plethora of different 
threats.  Therefore, novel developments are focused not only on increasing the robustness and 
reliability of systems but also on taking into account their recovery.  The concept of resilience 
encompasses these developments.  An essential aspect concerning the quantification of resilience 
is how it can help decision-makers to efficiently improve and construct the complex systems of 
our modern communities.  Consequently, it is necessary to develop comprehensive and widely 
adaptable, resilience-based decision-making tools.  In this paper, a numerically efficient method 
aiding decision-makers in balancing between different resilience-enhancing investments is 
presented.  Using an appropriate resilience metric, and moreover an adapted systemic risk 
measure, the approach allows direct comparison between failure prevention arrangements and 
recovery improvement arrangements, leading to an optimal tradeoff relative to the resilience of a 
system.  Additionally, the method is capable of incorporating monetary aspects into the decision-
making process. 

Keywords: Resilience, decision-making, systemic risk measure, tradeoff. 

 
1 Introduction 

Modern societies depend on a variety of complex systems, such as turbines, industrial plants or 
infrastructure networks.  These form complex capital goods whose construction, improvement and 
regeneration are of paramount importance for society.  However, these systems are subject to a 
plethora of different threats.  Evidence shows that a wide range of natural, technical and 
anthropogenic impacts at all scales can severely affect the functionality of these systems.  Due to 
the quickly growing complexity, it is extremely difficult to identify all possible criterial impacts 
and to prevent them accordingly.  Therefore, novel developments are required to focus not 
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exclusively on increasing the robustness and reliability of systems, but also on taking into account 
their recovery (Tran et al. 2017, Linkov & Palma-Oliveira 2017).  The concept of resilience 
encompasses these developments by considering and optimizing robustness, reliability and 
recovery of systems not only from technical, but also from economic perspectives (Cimellaro et 
al. 2010, Ayyub 2015).  This leads to a paradigm shift from a strategy that secures systems from 
failing to a strategy that makes systems effective also in the case of failure.  During the last two 
decades, a vast number of different approaches to quantify resilience were published (Bergström 
et al. 2015, Hosseini et al. 2016). 

An essential aspect introduced by this new approach is how the quantification of resilience can 
help decision-makers to efficiently design and improve the key complex systems present all over 
our modern communities (Hosseini et al. 2016, Tran et al. 2017).  It is obvious that without the 
consideration of monetary constraints, the resilience of a system can be vastly increased.  
However, neglecting monetary constraints does not reflect reality, and it is necessary to develop 
methods that help decision-makers balance between different resilience-enhancing investments.  
Therefore, in this work, the sophisticated resilience metric by Ouyang et al (2012) as well as an 
adapted systemic risk measure by Feinstein et al. (2016) are applied to an exemplary flow system 
to present an efficient method for determining the most cost-effective combination of different 
resilience-enhancing investments under a certain minimum-resilience condition. 

In the following, section 2 briefly describes the resilience metric by Ouyang et al (2012) and 
section 3 introduces the adaptation of the systemic risk measure by Feinstein et al. (2016).  Section 
4 provides an overview of the simulation procedures and the exemplary flow network.  The paper 
finishes with a discussion about the results in section 5 and conclusions in the final section. 
 
2 Resilience Metric 

The expected annual resilience metric 𝑅𝑒 by Ouyang et al. (2012) is defined as the expectation of 
the ratio between the integral of the system performance 𝑃(𝑡) over a target time interval [0, 𝑇] 
and the integral of the target system performance 𝑇𝑃(𝑡) in the same interval.  According to 
Hosseini et al. (2016), it is categorized as a probabilistic and time-dependent resilience metric and 
is defined as:  

𝑅𝑒 = 𝐸[𝑌]	, where 𝑌 =
∫ 𝑃(𝑡)𝑑𝑡2
3

∫ 𝑇𝑃(𝑡)𝑑𝑡2
3

	. (1) 

𝑃(𝑡) is a random quantity modeled by a stochastic process.  𝑇𝑃(𝑡) is generally considered as 
a stochastic process as well, but it is assumed to be a non-random constant 𝑇𝑃 in this work.  By 
introducing the discrete number of failure events in the target time 𝑁(𝑇), Eq. (1) could be further 
written as 

𝑌 = 1 −
∑ 𝐴𝐼𝐴;(𝑡;)
<(2)
;=>
𝑇𝑃 ∙ 𝑇 	, (2) 

where 𝑡; is the random time of the occurrence of the 𝑛th event.  Finally, 𝐴𝐼𝐴;(𝑡;) is the impact 
area, i.e., the area between the reduced system performance curve caused by the 𝑛th failure event 
and the target system performance curve. 

Although this metric is capable of considering hazards of different types, for illustrative 
purposes, only one hazard type is taken into account.  The resilience metric takes values between 
0 and 1, where 𝑅𝑒 = 1 indicates a system performance corresponding to the target performance 
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over the regarded time period [0, 𝑇], and 𝑅𝑒 = 0 indicates that the system is not working over 
[0, 𝑇]. 
 
3 Systemic Risk Measure 

The adaptation of the approach suggested by Feinstein et al. (2016) quantifies system inherent risk 
on the basis of descriptive input-output models and acceptance criterions representing the 
arbitration of a regulatory authority. 

Let (Ω,ℱ, 𝑃) be a probability space, 𝑙 ∈ ℕ the entities number of a considered system and 𝑘G2 ∈
ℝ; a vector of control variables specifying to the 𝑖th entity.  For any scenario 𝜔 ∈ Ω and 
endowment 𝑘 assume 𝑌K(𝜔) to be the real number capturing the ratio in Eq. (2) applied to the 
investigated system which is assumed to be increasing in 𝑘.  In this case the underlying input-
output model is provided by 𝑌 = (𝑌K)K∈ℝL×N. 

According to Feinstein et al. (2016), acceptance criterions 𝒜 ⊆ 𝒳 are sets of random variables 
meeting the requirements of a decision-maker, with 𝒳 denoting a suitable vector space of random 
variables, e.g. the family of all bounded random variables noted 𝐿S(Ω,ℝ).  In the context of this 
work, for an acceptance threshold 𝜆 ∈ (0,1), the acceptance criterion is defined as: 

 𝒜 = {𝑋 ∈ 𝒳|𝐸[𝑋] ≥ 𝜆}. (1) 

Once the input-output model and the acceptance criterion are determined the adapted, set-valued 
and multivariate risk measure is defined by: 

 𝑅(𝑌; 𝑘) = {𝑚 ∈ ℝ\×;|𝑌K]^ ∈ 𝒜}. (2) 

These sets consist of all endowment-enhancing 𝑚 added to 𝑘, with 𝑘 being understood as basic 
equipment of the regarded system, leading to a resilience value greater or equal to 𝜆, see Eq. (2).  
Hereinafter the basic equipment 𝑘 is set to zero and 𝑅(𝑌; 0) is written as 𝑅(𝑌).  Consequently, all 
elements 𝑎 of this set are denoted as endowments. 

In Feinstein et al. (2016) the authors present a grid search algorithm to efficiently approximate 
𝑅(𝑌; 𝑘) with a chosen accuracy, cf. Audet & Hare (2017). 
 
4 Flow Network and Procedures to Simulate the System Performance 

Flow networks are generically applicable models used to represent complex systems, such as 
turbines, industrial plants or infrastructure networks.  In this application the flow network shown 
in Figure 1, with seven nodes and eight edges, is considered.  In this case, the edges are considered 
to be the essential network components, each of which is associated with one out of 𝑏 component 
types.  Thereby the endowment of each edge	𝑖 ∈ {1, … ,8} is designated by 𝑎G

c = (𝑐c, 𝑟c∗) ∈ ℕ>×; 
with 𝑗 ∈ {1, … , 𝑏}, containing 𝑛 = 2 properties, capacity 𝑐c  and recovery improvement 𝑟c∗.  In 
addition to the edge grouping, further restrictions can be made, e.g. by setting the component 
property 𝑟∗ to be constant.  Analogous to Feinstein et al. (2016), these constraints can be captured 
by narrowed elements 𝑎i ∈ ℕj and a monotonously increasing function 𝑔:ℕj → ℕ\×;, with 𝑝 as 
the number of non-restricted entities of the native endowment matrix 𝑎.  The systemic risk 
measure results as: 𝑅(𝑌) = {𝑚 ∈ ℕj|𝑌o(^) ∈ 𝒜}.  Note that under these assumptions 𝑅(𝑌) is a 
discrete set and the abovementioned grid search algorithm by Feinstein et al. (2016) no longer 
provides an approximation but determines 𝑅(𝑌) exactly.  The source node of the flow network is 
denoted by 𝑠 with an initial flow 𝑤 and the target node by 𝑡 with a destination flow 𝑣, respectively.  
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The considered time interval [0, 𝑇] is subdivided into 𝑢 time steps 𝑡3,… , 𝑡2.  In each time step 𝑡t 
the system performance is determined by the ratio of the time-dependent destination flow 𝑣 to the 
initial flow 𝑤, i.e. 𝑃(𝑡) = 𝑣(𝑡t)/𝑤 with 𝑡 ∈ [𝑡t, 𝑡t]>). 
 

 

Figure 1.  Exemplary flow network for 𝑏 = 2 component types. 

The flow for a given endowment 𝑎 is simulated as follows: In each time step, the allocation of 
the initial flow is determined node by node, based on a breadth-first search.  The procedure starts 
with the source node and takes into account the following rules: (i) the incoming flow is allocated 
to all subsequent edges in proportion to the respective capacities; (ii) if the capacity of a 
subsequent edge is exceeded, this edge is considered to be destroyed immediately and the flow is 
instead allocated to the remaining edges, taking into account (i); (iii) if a node has no subsequent 
edge, its current flow is lost. 

The failure probability of each edge depends on the respective utilization of the edge capacity 
caused by the flow as 𝑝G = 𝛽 ∙ (𝑣G/𝑐G), where 𝑣G is the current flow and 𝑐G is the capacity of the 
respective edge 𝑖.  The factor 𝛽 ∈ (0,1) mitigates the failure probability.  At the end of the time 
step, the failure probability of each edge is determined and according to this, failures are realized.  
A failed node is considered to be destroyed.  Note that the failure process in this work is assumed 
to be immediate and other failure profiles or aging effects, as e.g. introduced by Ayyub (2014), 
are not taken into account for reasons of simplification.  The same applies to the recovery profiles.  
Each destroyed edge is assumed to be immediately recovered after 𝑟 = 𝑟wxy − 𝑟∗ time steps, with 
𝑟∗ < 𝑟wxy, where 𝑟wxy is the maximum number of time steps for recovery.  This corresponds to 
the one step recovery profile, introduced by Ayyub (2015). 

The described simulation procedure is performed 𝑢 times, once for each time step, resulting in 
a staircase-shaped system performance over [0, 𝑇].  Furthermore, this procedure is repeated 1000 
times so that the arithmetic mean of the ratio between the system performance 𝑃(𝑡) and the target 
performance 𝑇𝑃(𝑡) shown in Eq. (1) converges to the expected value, that is the resilience.  This 
scheme is repeated according to the grid search algorithm mentioned in section 3, providing the 
set of all accepted endowments 𝑅(𝑌).  In the subsequent section, two different system scenarios 
will be presented and discussed. 
 
5 Scenarios and Decision-Making 

The method described in the previous sections, is applied to two scenarios of the system shown in 
Figure 1.  The values of the decisive parameters for both scenarios are assumed to be: acceptance 
threshold 𝜆 = 0.8, mitigation factor 𝛽 = 0.025, number of time steps 𝑢 = 100.  Note that all 
parameter values in this section are chosen arbitrarily for illustrative purposes and that the costs 
for the endowments properties, in both scenarios, are assumed to be linearly increasing. 
 
5.1    Scenario 1 
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In the first scenario, the recovery improvements of both component types are assumed to be 
constant with 𝑟>∗ = 𝑟|∗ = 11.  This leads, with an assumed maximum recovery time 𝑟wxy = 21, to 
a constant recovery duration for each destroyed edge of 𝑟 = 10 time steps.  The capacities of both 
edge types are explored over 𝑐>, 𝑐| ∈ {1,… ,20}.  From this, and with an initial flow 𝑤 = 3 the set 
of all accepted endowments 𝑅(𝑌) results as shown in Figure 2a), where the filled dots represent 
the elements of 𝑅(𝑌). 
 

 
  a)  b)  c) 

Figure 2.  a) Accepted endowments of scenario 1 (filled dots); b) accepted endowments of scenario 2 
(filled dots); c) staircase-shaped system performance 𝑃(𝑡) over [0, 𝑇] of scenario 2 for endowment 

𝑎> = (9,10). 

 
5.2    Scenario 2 
In the second scenario, all eight edges are assumed to be assigned to one component type.  As in 
scenario one, the maximum recovery time is set to 𝑟wxy = 21, and the recovery-improvement is 
explored over 𝑟>∗ ∈ {1,… ,20}.  In addition, the capacity is explored over 𝑐> ∈ {1, … ,20}, as well.  
This leads, with an initial flow 𝑤 = 5, to a set of all accepted endowments 𝑅(𝑌) as shown in 
Figure 2b).  Figure 2c) shows the staircase-shaped system performance 𝑃(𝑡) over the time interval 
[0, 𝑇] for an exemplary endowment 𝑎> = (𝑐>, 𝑟>∗) = (9,10). 
 
5.3    Decision-Making 
In resilience-enhancing decision-making, the monetary conditions must be considered.  Therefore, 
it is necessary to find the most cost-effective endowment 𝑎�.  Under the assumption of linear 
increasing endowment properties costs, 𝑎�	is an element of 𝑅�(𝑌) ⊆ 𝑅(𝑌), with 𝑅�(𝑌) representing 
the set of all endowments located at the upper frontier graph as identified in Figure 2a) and 2b).  
Note that due to the monetary linearity condition, this endowment in 𝑅�(𝑌) can only correspond to 
a non-dominated point in the upper front graph, cf. efficient allocation rules (EAR) by Feinstein 
et al. (2016).  The consideration of these conclusions and the application of the grid search 
algorithm lead to a high efficiency in terms of the computational effort. 

Considering endowment properties costs of 𝑐>,���� = 250€, 𝑐|,���� = 180€, 𝑟>,����∗ = 𝑟|,����∗ =
170€, the most cost-effective endowment for the first scenario results as 𝑎�> = (𝑐>, 𝑟>∗) = (4,11), 
𝑎�| = (𝑐|, 𝑟|∗) = (6,11), with a total cost of 23360€.  For the second scenario, with endowment 
properties costs of 𝑐>,���� = 200€, 𝑟>,����∗ = 170€ the most cost-effective endowment results as 
𝑎�> = (𝑐>, 𝑟>∗) = (9,10), and a total cost of 28000€. 
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6 Conclusion 

In this paper, a decision-making procedure was introduced that allows to identify optimal tradeoffs 
between resilience-enhancing endowments in complex systems.  It is based on an appropriate 
systemic risk measure.  Using a suitable resilience metric, the paper demonstrates that this 
approach enables a direct comparison of the impact of different controls on the resilience of the 
system, e.g. failure prevention and recovery improvement arrangements.  In addition, the method 
is capable of incorporating monetary aspects into this decision-making process – which are in 
reality of paramount importance.  Furthermore, the computational effort is significantly reduced 
by a grid search algorithm for systemic risk measures.  Another benefit of the suggested 
methodology is its broad applicability that is not limited to flow networks.  The approach can 
easily be adapted to other systems, e.g. systems whose performance purely depends on the 
topology.  The presented method is capable to substantially support decision-makers in improving 
the complex systems of our modern society and increasing their resilience. 
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