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The resilience of complex systems such as gas turbines, industrial plants, or critical infrastructure networks is of

increasingly higher interest to engineers. Instead of solely concentrating on the robustness of systems and their

ability to withstand certain threats, research is more and more focused on their ability to recover from these events as

well. Appropriate quantitative measures of resilience can support decision-makers seeking to improve or to design

complex systems. In this paper, a previously developed comprehensive and adaptable resilience-based decision-

making method is extended to handle higher-dimensional problems subject to monetary constraints. The technique

applies a grid search algorithm for systemic risk measures to significantly reduce the computational effort. In order to

demonstrate its usefulness, the extended decision-making procedure is applied to a functional model of a multistage

high-speed axial compressor.
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1. Introduction

Gas turbines are complex systems highly utilized
in various areas of modern societies, such as
propulsion and power generation industries. Ac-
cording to Back et al. (2010), reducing life cy-
cle costs and meeting increasingly stringent reg-
ulations on greenhouse gas emissions are the key
challenges faced by gas turbine operators. There-
fore, for environmental and economic reasons, it
is of utmost importance to optimize the perfor-
mance of these capital goods over their lifetime.
It is evident that these systems are exposed to a
multitude of adverse influences of natural, techni-

cal and anthropogenic origin. These influences af-
fect the functionality of gas turbines, e.g. by lead-
ing to blade roughening, a major cause of perfor-
mance deterioration (Back et al., 2010). In par-
ticular, fouling of the axial compressor has a de-
cisive influence on the performance as the com-
pressor forms a fundamental component of a gas
turbine or a jet engine (Tarabrin et al., 1998). Ac-
cording to Bons (2010) the degradation of axial
compressors is caused by a variety of operating
and environmental factors. The main contributors
include ingested aerosols such as salt spray from
marine applications, airborne dust, sand, pollen,
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combustion particles and volcanic ash, as well as
occasionally larger objects such as accumulations
of ice. These foreign particles interact with and
deposit on the components, especially the blades,
resulting in an increased surface roughness.

Given the high and increasing complexity of
technical systems such as the axial compressors,
identification and prevention of all potential ad-
verse impacts is infeasible. It is therefore impor-
tant, that novel developments in technical engi-
neering focus not only on monitoring and improv-
ing the robustness and reliability of systems but
also on their recovery from adverse events (Tran
et al., 2017). The concept of resilience encom-
passes these developments: analyzing and opti-
mizing robustness, reliability and recovery of sys-
tems – both from a technical and from an eco-
nomic perspective (Cimellaro et al., 2010; Ayyub,
2015; Fang et al., 2015). Resilience applied to
the artificial systems of our modern society leads
to a paradigm shift. Secure systems cannot only
be based on strategies that prevent failures but
must include strategies for the efficient recovery
in cases of failure.

In engineering, the concept of resilience
has steadily grown in popularity in recent
years (Bergström et al., 2015; Patriarca et al.,
2018). The term “resilience” occurs in various
areas such as ecology, economics, psychology as
well as in the context of mechanical systems and
is derived from the Latin word “resilire”, mean-
ing “to bounce back”. The concept of resilience
first appeared in the domain of ecological sys-
tems by Holling (1973). Although numerous other
definitions from various scientists followed (Fik-
sel, 2003; Little, 2003; Hollnagel et al., 2006;
Bruneau and Reinhorn, 2007; Youn et al., 2011),
most of them have certain key aspects in common
which are captured by Holling’s early definition
(Holling, 1973).

Ayyub (2014) provides a literature review and
develops a comprehensive definition of resilience
in the context of complex systems based on
the content of the Presidential Policy Direc-
tive (PPD) on critical infrastructure security and
resilience (Presidential Policy Directive (PPD),
2013). His novel definition incorporates the for-
mer definitions, and provides a solid foundation
for the quantification of resilience.

There are numerous options for increasing re-
silience of complex multi-component systems
such as multistage axial compressors. In addition,
resources are not unlimited and resilience cannot
be arbitrarily increased. Therefore, it is indispens-
able for realistic methods not only to distinguish
and balance between a large number of different
resilience-enhancing controls, but to include mon-
etary aspects as well (Gilbert and Ayyub, 2016;
Fang and Sansavini, 2017).

Salomon et al. (2019) provide a method to iden-
tify the most cost-efficient allocation of resilient-

enhancing investments by combining the re-
silience metric of Ouyang et al. (2012) and the
systemic risk measure by Feinstein et al. (2017).
Their approach allows for a direct comparison of
the impact of heterogeneous controls on the re-
silience of a system over any period of time in
a two dimensional parameter space. In this pa-
per the previously introduced resilience decision-
making method is extended to problems with
higher dimensional parameter spaces and applied
to a functional model of an axial compressor for a
differentiated resilience analysis.

The paper is structured as follows: Section 2
briefly describes the fundamentals of the re-
silience decision-making method and the chal-
lenging task of its extension to n-dimensional ap-
plications. In Section 3 the extended method is ap-
plied to a functional model of an multistage axial
compressor. The paper concludes with a summary
of the results and discusses questions for future re-
search.

2. Resilience Decision-Making:

Fundamentals

This section recaps the the resilience decision-
making procedure proposed by Salomon et al.
(2019). The method is based on the fusion of three
key elements: A suitable metric for resilience
quantification of complex systems, an adaptation
of a systemic risk measure and the utilization of
a grid search algorithm to increase computational
efficiency.

2.1. Resilience Quantification

The availability of quantitative resilience mea-
sures is a basic prerequisite for the application of
resilience to engineering problems. Hosseini et al.
(2016) provide a survey of resilience metrics that
have appeared during the last two decades as well
as a categorization to subdivide them. The time-
dependent probabilistic resilience metrics form
one category and may be regarded as particu-
larly comprehensive. According to Hosseini et al.
(2016) and Henry and Ramirez-Marquez (2012)
these, mostly performance-based, metrics are ca-
pable of taking into account the following system
and transition states after a disturbance event: (i)
The original stable state whose duration can be in-
terpreted as the reliability of the system. (ii) The
vulnerability of the system, represented by a loss
of performance after the occurrence of a disrup-
tive event; the robustness of the system mitigates
the loss of performance. (iii) The recoverability of
the system, characterized by the disrupted state of
the system and its recovery to a new stable state.
An illustration of these three phases is shown in
Fig. 1.

In their approach, Salomon et al. (2019) adopt
the time-dependent probabilistic metric developed
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Fig. 1. In the evolution of a system after the impact of a

disruptive event, different phases can be distinguished: (i)

the original stable state, (ii) disruptive impact, vulnerability,

(iii) disrupted state and recovery; adapted from Henry and

Ramirez-Marquez (2012).

by Ouyang et al. (2012). It is defined as the ex-
pected ratio of the integral over the actual system
performance Q(t) and the integral of a target sys-
tem performance T Q(t):

Res = E[Y ], (1)

where

Y =

∫ T

0
Q(t)dt

∫ T

0
T Q(t)dt

. (2)

The system performance Q(t) and the target sys-
tem performance T Q(t) are stochastic processes.
T Q(t) may also be assumed as a non-random
constant T Q for the sake of simplicity. The re-
silience metric takes values between 0 and 1. A
value of Res = 1 indicates a system performance
corresponding to the target performance, while
Res = 0 indicates that the system is not working
during the considered time period.

2.2. Adapted Systemic Risk Measure

In Feinstein et al. (2017) the authors propose a
novel approach to measuring risk inherent in com-
plex systems. The methodology is based on two
key components: A suitable descriptive input-
output model and, an acceptance criterion repre-
senting the normative safety standards of a regula-
tory authority. These systemic risk measures were
e.g. considered in finance (Weber and Weske,
2017). In Salomon et al. (2019) this methodol-
ogy is adapted for the application to engineering
systems as follows.

Consider a technical system with l components
i ∈ {1, . . . , l} of ji ∈ {1, 2, . . . , b} ⊆ N types
with n properties influencing the system perfor-
mance Q(t), in the following called “endowment
properties”. A component i can then be character-
ized by a row vector

(ai; ji) =

(ηi1, ηi2, . . . , ηin; ji) ∈ R
(1×n) × N,

(3)

where (ηi1, ηi2, . . . , ηin) are the numerical values
of the n relevant endowment properties. The sys-
tem is completely described by a pair, consisting

of the matrix A ∈ R
(l×n) and the column vector

z ∈ N
l that captures the components’ types:

(A; z) =









η11 η12 · · · η1n; z1
η21 η22 · · · η2n; z2

...
...

...
...

ηl1 ηl2 · · · ηln; zl









. (4)

The descriptive input-output model Y = Y(A;z)

is defined by these pairs. Consider the following
example of a specific acceptance set

A = {X ∈ X | E[X] ≥ α} (5)

with α ∈ [0, 1]. A corresponding risk measure is
defined by

R(Y ) =
{

A ∈ R
l×n | Y(A;z) ∈ A

}

, (6)

as the set of all allocations of the system endow-
ment properties A such that the altered system
possesses a resilience greater or equal to α.

2.3. Grid Search Algorithm and the Curse

of Dimensionality

According to Feinstein et al. (2017), systemic risk
measures can be determined by a combination of
a grid search algorithm and stochastic simulation.
In this study, Monte Carlo simulation is used to
estimate the probabilistic resilience metric (Eq. 1,
Eq. 2) for different system configurations. A sig-
nificant advantage of the grid search algorithm is
the substantial reduction in computing time, as
only a fraction of all possible system configura-
tions has to be evaluated. The algorithm consists
of two phases:

(I) Search along the main diagonal of the pa-
rameter space until the first acceptable com-
bination of endowment properties (based on
the adapted risk measure) is found.

(II) Determine the Pareto frontier between the
acceptance set R(Y ) and its complement

R(Y )
c
.

The algorithm is able to compute the entirety of
R(Y ) while significantly reducing the computa-
tional effort due to the monotonic nature of the
input-output model Y(A;z). For a detailed descrip-

tion of a grid search algorithm for two dimen-
sional problems, see Feinstein et al. (2017), Ch.
4.

In Salomon et al. (2019) this algorithm was in-
cluded in the resilience decision-making method
and applied to case studies with two dimensional
parameter spaces. In their work, Feinstein et al.
(2017) point out that the grid search algorithm is
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applicable to higher dimensional problems, how-
ever “[. . . ] at the price of substantially larger
computation times and required memory capac-
ity.”. When analyzing technical real world sys-
tems, it is often imperative to consider a large
number of influencing factors and thus a higher
dimensionality of the parameter space. There-
fore, in the following section, an extension of the
previously proposed resilience decision-making
methodology to n-dimensional problems is ap-
plied to the four-dimensional model of an axial
compressor.

3. Resilience Decision-Making:

Multistage High-Speed Axial

Compressor

Axial compressors are complex, multi-component
key elements of gas turbines. Therefore, in both
design and maintenance, it is critical to consider as
many system performance influencing factors as
possible to maximize the compressor’s resilience
efficiently. In order to illustrate this, the resilience
decision-making analysis of an axial compressor
model, carried out in Salomon et al. (2019), is ex-
tended to deal with components of different types.

3.1. Model

In a previous work within the Collaborative Re-
search Center 871, funded by the German Re-
search Foundation Miro et al. (2018) provide a
functional model of the four-stage high-speed ax-
ial compressor of the Institute for Turbomachin-
ery and Fluid Dynamics at Leibniz Universität
Hannover, representing its reliability characteris-
tic and functionality. For detailed information
about this axial compressor see: Braun and Se-
ume (2006); Hellmich and Seume (2008); Sie-
mann et al. (2016).

The model captures the dependence of the over-
all compressor performance, namely the total-to-
total pressure ratio and the total-to-total isentropic
efficiency, on the surface roughness of the individ-
ual blades, arranged in rotor and stator rows. It is
based on the results of a sensitivity analysis of the
aerodynamic model of the compressor and calcu-
lated Relative Important Indices, cf. (Feng et al.,
2016). A network representation of the functional
model is shown in Fig. 2. Each component repre-
sents either a stator (S1 - S4) or rotor row (R1 -
R4).

The rows are classified into four component
types ji ∈ {1, 2, 3, 4} ∀i ∈ {1, . . . , 8}. This clas-
sification as well as the components’ arrangement
is chosen based on the resulting effect of their
blade roughness on the two performance param-
eters of the axial compressor. More specific, an
interruption between start and end means exceed-
ing a performance variation of at least 25%, cor-
responding to a non-functional compressor. This

defines the system performance Q(t) of the func-
tional model for the subsequent application of the
resilience decision-making method. The system
performance is determined at each time point th
and is 1 if a path exists from start to end or 0 if this
connection is interrupted. More detailed informa-
tion on the functional model and its formulation
can be obtained from Miro et al. (2018).

For the analysis, each row, i.e. each component
of the functional model, is assumed to be charac-
terized by two endowment properties, a roughness
resistance re and a recovery improvement r∗, so
that a component is fully described by (ai; ji) =
(rei, r

∗

i
; ji). In this context, roughness resistance

can be interpreted as a coating that counteracts
roughening of the blade surface. Both, the rough-
ness resistance rei and the recovery improvement
r∗
i

of each row i are assumed to be functions of
the type ji, i.e. rei = rei′ , r

∗

i
= r∗

i′
if ji = ji′ .

Each component of the functional model can
fail at random after the system performance has
been computed at time th. A failed component
is treated as no longer present in the model and
does not contribute to the overall system perfor-
mance at time th+1 and all subsequent time points
until it is fully recovered. The failure probability
of a component i in the time interval (th, th+1)
is assumed to be constant in time, cf. Miro et al.
(2018), and is given by

P {(ai; ji) fails during (th, th+1)} = ∆t ·λi (7)

with

λi = 0.8− 0.03 · rei, (8)

where λi is the time-independent failure rate. An
increase of the roughness resistance of a row of
blades reduces the degradation of the surface and
thus the corresponding failure rate λi.

If a component i failed, its functionality is as-
sumed to be fully recovered after a number of time
steps according to

r = rmax − r∗ with r∗ < rmax (9)

where rmax is an upper bound for number of time
steps for recovery and r∗ is a reduction specific to
the component.

3.2. Costs of Endowment Properties

The optimal endowment properties are related to
the quality of the components, and an increase in
their production quality is associated with large
costs. This should be taken in to account in the
decision-making process. As discussed in Met-
tas (2000), an increase of the reliability of com-
ponents in complex networks might be associated
with an exponential increase in their costs.

An increase of the endowment property “rough-
ness resistance” decreases the failure rate of the
blades of a row and therefore improves reliability



Proceedings of the 29th European Safety and Reliability Conference 1361

R3

R4

S2

S1

S3

S4

R4R4

S1S1S1S1S1S1

S2S2S2S2S2S2

S3S3S3S3S3S3

S4S4S4S4S4S4

R3R3R3Component Type 1

Component Type 2

Component Type 3

Component Type 4 R1 R2

Fig. 2. Functional model of the multistage high-speed axial compressor

(see Eq. 7 and Eq. 8). Thus, its total cost is defined
by

costre =
8

∑

i=1

pricere(rei;ji) · 1.2
(rei−1), (10)

where rei is the “roughness resistance” value of
component i, ji its type and pricere(rei;ji) a com-

mon basic price. In a similar way an exponen-
tial relationship is assumed for the cost associated
with recovery improvement:

cost∗ =

8
∑

i=1

price∗(r∗;ji) · 1.2
(r∗

i
−1). (11)

The total cost cost(A;z) of an endowment is the

sum of these costs:

cost(A;z) = costre + cost∗. (12)

3.3. Scenario

In order to apply the four dimensional decision-
making method for resilience-enhancing endow-
ments to the multistage high-speed axial com-
pressor, the model parameter and simulation pa-
rameter values, shown in Tab. 1, are considered.
In a first step, the set of all acceptable endow-
ments corresponding to a resilience value of at
least Res = 0.85 over the considered time period
is determined. Since any improvement of the ax-
ial compressor blades is associated with costs, the
next step is to find the cheapest acceptable endow-

ment denoted by Â. The recovery improvement
r∗ is assumed to be fixed for all components, re-
gardless of the type, r∗

i
= 11 ∀i ∈ {1, . . . , l}

and the roughness resistance re is explored over
rei ∈ {1, . . . , 20} ∀i ∈ {1, . . . , l}. The rough-
ness resistance values can be interpreted as in-
creasing quality levels of coatings.

Figure 3 illustrates the results of the grid search
algorithm. It shows the roughness resistance com-
binations contained in R(Y ), i.e. all combinations

Table 1. Parameter values for the resilience decision-making

method for the functional model of the multistage high-speed

axial compressor.

Parameter Scenario

Number of blade rows l 8

Acceptance threshold α 0.85

Number of time steps u 200

Length of a time step ∆t 0.05

Failure rate λ 0.8

Maximum recovery time rmax 21

Recovery improvement r∗ 11

Roughness resistance re rei ∈ {1, . . . , 20}

Recovery improvement price:

price∗
(r∗;ji)

600e

Roughness resistance price:

pricere
(rei;ji)

800e ∀ji ∈ {1, 2, 3}

500e ∀ji = 4

that lead to a satisfactory system resilience of at
least Res = 0.85. It can clearly be seen that
the roughness resistance of the blades of stage
four (component type 3) has the highest impact
on the system resilience. Combinations with coat-
ing quality levels of rei ≤ 15 in the fourth stage
are insufficient to achieve an acceptable degree of
resilience, regardless of the endowment property
values of the other component types. In addition,
the roughness resistance of the four stators (com-
ponent type 4) has the least influence on the sys-
tem resilience out of all types. Endowments with
a minimum coating quality level of (rei, 4) = 1
are sufficient to achieve acceptable resilience val-
ues. The same applies to the rotors of component
type 1 and type 2. Although, in comparison to the
stators, components of the other types need sig-
nificantly higher coating quality levels in order to
compensate small roughness resistance values.

The design, maintenance and optimization of
technical capital goods, such as an axial com-
pressor, is invariably restricted by monetary con-
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Fig. 3. Numerical results of the 4D grid search algorithm for
the functional model of the axial compressor with explored
roughness resistance values

straints. For decision-making, it is crucial to be
able to take these monetary constraints into ac-
count. Therefore, Fig. 4 exclusively shows the
roughness resistance combinations contained in
R(Y ) that lead to a satisfying system resilience
of Res = 0.85 and, are less expensive than a pre-
defined cost limit for roughness resistance, which
is arbitrarily assumed to be costre = 50 000e in
this case study.

The results indicate that only configurations
with low coating quality levels for stators (com-
ponent type 4) are below the cost limit. Firstly,
this is due to the already mentioned low influ-
ence on system resilience, and secondly, to the
high costs of the quality levels for the stators. Al-
though the basic price of 500e is quite low, in
terms of the costs for the entire component type
it is significantly higher than for the other types
due to the higher number of components of this
type. In addition, only configurations that pro-
vide the highest quality levels of (rei, 3) ≥ 17 for
the rotor of type 3 are acceptable and below the
price limit. The roughness resistance of this ro-
tor has such a significant influence on the system
resilience that at lower quality levels, the compen-
sation by higher quality levels of the remaining
stages would be above the given budget. Although
the roughness resistance of the rotor of component
type 2 has less of an influence on system resilience
than that of component type 3, minimal quality
levels of the coating cannot be compensated by
high qualities of the other components. Thus, at
least (rei, 2) = 4 is required to fulfill the accep-
tance criterion.

The grid search algorithm is able to reduce the
numerical effort for the computation of R(Y ) by
about 98%. As such, only 2% of the feasible com-
binations of roughness resistance values have to
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Fig. 4. Numerical results of the 4D grid search algorithm for
the functional model of the axial compressor with explored
roughness resistance values and a cost threshold for roughness
resistance of 50 000e

be evaluated.
Taking into account the base prices in Tab. 1,

the cheapest endowment is characterized by
roughness resistances of (rei, 1) = 4, (rei, 2) =
14, (rei, 3) = 19, (rei, 4) = 3 for the respective
components. In Fig. 4 the corresponding config-
uration is highlighted in blue. The final cost re-
sults from Eq. 12 as cost(A;z) = costre +cost∗ =
42 604e+ 35 664e = 78 268e.

Note, that although the method is applied to a
4-dimensional problem, its application to higher-
dimensional problems is only limited by memory
and computational time constraints.

4. CONCLUSION
This paper addresses the challenge of decision-
making in technical systems with multidimen-
sional resilience-influencing parameter spaces, by
adapting the resilience decision-making method-
ology presented in Salomon et al. (2019) to higher
dimensional problems. This extended approach
allows a more comprehensive direct comparison
of the impact of heterogeneous controls on the re-
silience of a system. More precisely, this is ob-
tained by extending the utilized grid search algo-
rithm.

The extended method is applied on a func-
tional model of an axial compressor with re-
silience influencing stages of four different com-
ponent types. The results obtained with this ex-
tended method are consistent with the data on in-
fluence of the individual component types on the
isentropic efficiency of the compressor used to
construct the functional model (Miro et al., 2018).
Note, that this extended approach is applicable to
systems of any kind.

Monetary restrictions are included in the anal-
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ysis as well. More precisely, not only the most
cost-effective, accepted endowment is identified,
but subsets of the set of all accepted endowments
below defined price levels can be formed. Budget
limits can thus be specifically taken into account
in the decision-making process.

Future work regarding multidimensional pa-
rameter spaces must deal with the limitations in
computing time and storage capacity in order
to enable application to even higher-dimensional
problems. Namely, techniques such as advanced
sampling methods, e.g. Subset Simulation must
be investigated to further reduce numerical effort.
At the same time, efficient storage solutions, for
instance sparse matrices have to be explored as
storing the full resilience information on a high-
dimensional system can quickly reach memory
limits. Alternatively, the grid search algorithm
included in the resilience decision-making could
either be optimized or exchanged for an entirely
different optimization method depending on the
problem at hand.
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