Response evolutionary power spectrum determination of linear and nonlinear structural systems with singular matrices subjected to non-stationary stochastic excitation

George Pasparakis^{1*}, Vasileios C. Fragkoulis¹, Liam Comerford², Ioannis P. Mitseas³, Michael Beer¹, _{2,4}

¹Institute of Risk and Reliability Leibniz Universität Hannover Hannover, Germany george.pasparakis@irz.uni-hannover.de, fragkoulis@irz.uni-hannover.de

> ²Institute of Risk and Uncertainty University of Liverpool Liverpool, UK 1.a.comerford@liv.ac.uk

> > ³School of Engineering University of Leeds Leeds, UK I.Mitseas@leeds.ac.uk

⁴International Joint Research Center for Engineering Reliability and Stochastic Mechanics Tongji University Shanghai, China beer@irz.uni-hannover.de

ABSTRACT

An approximate analytical technique is proposed for determining the response evolutionary power spectrum of stochastically excited linear/nonlinear, structural multi-degree-of-freedom systems with singular matrices. When the problem of deriving the equations of motion of complex, multi-body systems is considered, it can be argued that utilizing more than the minimum number of degrees-of-freedom potentially results to enhanced modeling flexibility; further, it results to reduced computational cost solution frameworks for the system stochastic response determination. However, a redundant coordinates modeling scheme also yields singular matrices in the system governing equations of motion. Nevertheless, a solution framework based on the mathematical concept of the generalized inverses of singular matrices has been recently developed for deriving the response statistics of linear/nonlinear systems with singular matrices, subjected to stationary excitation [1]. This paper constitutes an extension of the results in [1], to account for linear/nonlinear structural systems subject to non-stationary excitations. In this regard, relying on the theory of locally stationary processes, and employing the family of generalized harmonic wavelets [2], a Moore-Penrose generalized inverse excitation-response relationship is derived for determining the system response evolutionary power spectrum. Further, a recently developed harmonic wavelets based statistical linearization technique [3] is also generalized herein to account for nonlinear multi-degree-of-freedom systems with singular matrices subjected to non-stationary excitation. The validity of the proposed technique is demonstrated by pertinent numerical examples.

References

V.C. Fragkoulis, I.A. Kougioumtzoglou, and A.A. Pantelous. "Statistical linearization of nonlinear structural systems with singular matrices". In: Journal of Engineering Mechanics 142(9) (2016), p. 04016063
P.D. Spanos and I.A. Kougioumtzoglou. "Harmonic wavelets based statisti- cal linearization for response evolutionary power spectrum determination". In: Probabilistic Engineering Mechanics 27(1) (2012), pp. 57–68

[3] F. Kong, P.D. Spanos, J. Li, and I.A. Kougioumtzoglou. "Response evo- lutionary power spectrum determination of chain-like MDOF non-linear structural systems via harmonic wavelets". International Journal

of Non-Linear Mechanics 66 (2014), pp. 3-17.