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Abstract

A new approximate analytical technique is proposed for determining the response evolutionary power spectrum (EPS) of
stochastically excited structural multi-degree-of-freedom (MDOF) linear and nonlinear systems with singular matrices. Such
systems can appear, indicatively, when a redundant coordinates modeling is adopted for forming the equations of motion of
complex multi-body systems. For this case, it can be argued that this modeling approach facilitates the system’s stochastic
response analysis, since employment of redundant DOFs is associated with computational cost efficient solution frameworks,
and potentially provides with enhanced modeling flexibility. In this context, aiming at the joint time-frequency response
analysis of MDOF systems, recently developed wavelet-based solution frameworks, which generalize classic input-output
relationships of random vibration, are adopted and further generalized in this paper to account for systems with singular matrices.
Specifically, resorting to the theory of generalized inverses of singular matrices, as well as to the theory of harmonic wavelets,
a Moore-Penrose generalized matrix inverse excitation-response relationship is derived herein for determining the response
EPS of linear MDOF systems. Further, a recently developed harmonic-wavelet-based statistical linearization technique is also
generalized to account for the case of nonlinear MDOF systems. The validity of the proposed technique is demonstrated by
pertinent numerical examples.

Keywords: Stochastic Dynamics - Moore-Penrose Inverse - Harmonic Wavelet - Singular Matrix - Evolutionary Power
Spectrum - Time-Frequency Analysis

1 Introduction

The nature of environmental excitations, such as earthquakes and wind loadings which evolve in time and are
described by evolutionary power spectra (EPS) (1), plays an instrumental role in the efficient analysis of structural
systems. In conjunction with the complexity of the considered system, they constitute two critical aspects towards
the development of efficient response analysis solution treatments. Therefore, taking into account the non-stationary
characteristics of natural excitations, several frameworks have been proposed for determining the system response,
as well as for conducting joint time-frequency response analysis, of linear and nonlinear systems; see, indicatively,
Refs. (2; 3; 4; 5; 6; 7; 8; 9; 10; 11).

As far as the joint time-frequency response analysis of engineering systems is concerned, the advent of the
potent machinery of wavelets has been proved pivotal. It has substantially enhanced the arsenal of the system
response characterization methods, when dynamic systems subjected to non-stationary excitation are considered
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(12; 8). Specifically, standard excitation-response relationships of random vibration theory, have been extended and
generalized in a wavelet-based framework, whereas wavelet-based versions of classic methodologies and techniques,
such as the statistical linearization method (2), have also been developed (9; 13). Moreover, wavelet analysis has
been used in conjunction with fractional calculus, for deriving the EPS of oscillators endowed with fractional
derivative elements (14).

With regards to the complexity of the dynamic systems, it is commonly accepted that the minimum number of
independent coordinates/degrees-of-freedom (DOF) is used in forming the system governing equations of motion
(2). However, it can be argued that for the case of multibody systems, a redundant coordinates approach potentially
facilitates the modeling procedure, while also results in enhanced flexibility and reduced overall computational
cost (15; 16; 17; 18; 19; 20; 21; 22). Further, it also leads to systems with singular matrices, rendering all standard
stochastic response analysis frameworks inapplicable. Note, in passing, that singular matrices do not solely appear
due to adopting a redundant DOFs modeling. They are also met in diverse engineering systems and applications,
such as systems with “massless” joints (23; 24), and in vibratory energy harvesting applications, where they appear
due to the coupling between the governing equations of the mechanical and the electrical system (25).

In this paper, taking into account the aforementioned aspects, a generalized inverse matrix harmonic-wavelet-
based treatment is proposed for conducting joint time-frequency response analysis of linear and nonlinear MDOF
systems with singular matrices, which are subjected to non-stationary excitation. Specifically, focusing on the
determination of the system response EPS, and resorting to the theory of the Moore-Penrose (M-P) generalized
matrix inverses, standard harmonic-wavelet-based techniques (9; 13) are generalized herein.

In this context, adopting a redundant coordinates modeling of the equations of motion, and also employing the
locally stationary wavelet (LSW) representation of a stochastic process (9), an M-P localized in time and frequency
domains, harmonic-wavelet-based frequency response function (MP HW-FRF) is derived. This can be construed
as a generalization of a recently developed HW-FRF (13), to account for systems with singular matrices. Further,
the MP HW-FRF is used for determining the system response EPS, by constructing an input-output relationship
which connects the excitation and response EPS. Next, a recently developed harmonic-wavelet-based statistical
linearization methodology (13) is also generalized. In this regard, an equivalent linear system corresponding to the
original nonlinear system is defined, and a set of time and frequency dependent expressions for the equivalent linear
elements is derived. This is attained by resorting to an iterative solution numerical scheme. The scheme is applied
on the coupled set of equations defined by the set of the equivalent elements expressions, and the M-P input-output
relationship of the equivalent linear system. Further, although the employment of the M-P inverse framework
implies a family of equivalent linear elements, uniquely defined elements are determined by setting equal to zero the
arbitrary term of the M-P based family. Finally, the nonlinear system response EPS is estimated by considering the
corresponding response EPS of the equivalent linear system. The efficiency of the proposed M-P inverse framework
is demonstrated by pertinent examples of linear and nonlinear MDOF systems. The obtained results are compared
with results derived by the standard solution treatment of Ref. (13) and are in complete agreement.

2 Mathematical preliminaries

2.1 Aspects of Moore-Penrose matrix inverse theory
The study of generalized matrix inverses has initiated and flourished mainly as a result of attempting to solve
systems of algebraic equations of the form

Ax = b, (1)

where A is either rectangular m0 × n0, or square but singular n0 × n0 matrix, and x, b are n0 vectors. Eq. (1)
appears in many theoretical problems in mathematics as well as many applied problems. Clearly, the nature of
matrix A renders its solution impossible. In this regard, the necessity of defining any form of “partial inverse”
for rectangular or square but singular matrices gave birth to the theory of generalized matrix inverses (26). The
Moore-Penrose (M-P) generalized matrix inverse holds an exceptional place among these theoretical results.

Definition 1. For any matrix A ∈ Cm0×n0 , there is a unique matrix A+ ∈ Cn0×m0 such that

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A. (2)

The matrix A+ defined in Eq. (2) is called the M-P inverse of A. If A ∈ Rn0×n0 is non-singular, then A+

coincides with A−1. Using the M-P inverse, a closed form solution to the algebraic system of Eq. (1) is attained,
which highlights its importance for several applications. In this regard, for any matrix A ∈ Rm0×n0 , Eq. (1) implies

x = A+b + (In −A+A)y, (3)
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where y denotes an arbitrary n0 vector and In0
represents the identity n0 × n0 matrix.

By resorting to the M-P matrix inverse theory, classic solution treatments of random vibration have been recently
generalized for determining the stationary stochastic response of linear and nonlinear systems with singular matrices
(27; 28; 29); see also Refs. (23; 30; 31; 24) for additional applications. However, it can be argued that the application
of state-of-the-art M-P solution frameworks is considerably limited, since relevant approaches completely ignore
the non-stationary characteristics of the system excitation. A more detailed presentation of the M-P inverse theory
can be found in Refs. (26) and (32).

2.2 Harmonic wavelets theory elements
2.2.1 Generalized harmonic wavelets

In this section, a concise presentation of the basic elements of wavelets analysis is provided for completeness. In
this regard, the wavelet transform [Wψf ] (j, k) of a function f(t) is defined as

[Wψf ] (j, k) =
1

| j |1/2

∫ ∞
−∞

f(t)ψ∗
(
t− k
j

)
dt, (4)

where ψ(t) is the mother wavelet, i.e., the generating function for all basis functions, [Wψf ] (j, k) is the wavelet
coefficient at frequency and time scale j and k, respectively, and “*” denotes the complex conjugate operator.
Eq. (4) is used for conducting joint time-frequency analysis of the function f(t). Further, choosing a different
mother wavelet function ψ(t) results in the definition of different families of wavelets. Among them, the so-called
generalized harmonic wavelets (GHW) constitute the most often considered family of wavelets in engineering
applications (33; 34). Utilizing the set of parameters (m,n) and k for defining the bandwidth at all scale levels, the
members of the GHW family in frequency domain are given by

ΨG
(m,n),k(ω) =

{
1

(n−m)∆ω exp
(
−iω kT0

n−m

)
, m∆ω ≤ ω < n∆ω

0, otherwise
(5)

where m,n, k ∈ Z+, T0 denotes the total time duration and ∆ω = 2π/T0. The importance of the GHW of Eq. (5)
stems from the fact that a decoupling of the time-frequency resolution from the values of the central frequency

ωc,(m,n),k =
(n+m)

2
∆ω, (6)

which is defined in the intervals [m∆ω, n∆ω] and
[
kT0

n−m ,
(k+1)T0

n−m

]
, is attained.

Further, the continuous generalized harmonic wavelet transform (GHWT) of a function f(t) is defined as the
projection of f(t) on the orthogonal basis given by the family of GHWs of Eq. (5) (34), that is

WG
(m,n),k [f ] =

n−m
kT0

∫ ∞
−∞

f(t)ψG(m,n),k(t)dt. (7)

A detailed presentation of the topic is found in Refs. (7; 12; 8).

2.2.2 Locally stationary wavelet representation of non-stationary stochastic processes

In terms of engineering applications, the versatile locally stationary wavelet (LSW) representation of stochastic
processes, firstly introduced in Ref. (35), facilitates the ensuing analysis by allowing for a representation of a
given non-stationary process as the summation of sub-processes defined at different scales and translation levels.
Specifically, adopting a GHW expansion of the system response and excitation, the LSW forms a set of orthogonal
basis functions on any given finite interval. Therefore, it results in the definition of a wavelet spectrum at a particular
scale and location providing, in essence, with the joint time-frequency content of the system’s non-stationary
excitation and the corresponding response.

In this regard, considering the family of GHWs of Eq. (7), the generalized harmonic-wavelet-based representation
of an n0 vector process x(t) takes the form

x(t) =
∑

(m,n)

∑
k

x(m,n),k(t), (8)

where the localized process x(m,n),k(t) at scale (m,n) and translation k, is given by
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x(m,n),k(t) = a(m,n),k cos
[
ωc,(m,n),k

(
t − kT0

n−m

)]
+ b(m,n),k sin

[
ωc,(m,n),k

(
t − kT0

n−m

)]
. (9)

In Eq. (9), ωc,(m,n),k denotes the central frequency of Eq. (6). Further, a(m,n),k and b(m,n),k are statistically
independent, zero-mean vector processes, whose variance is related to the EPS matrix Sxx

(m,n),k via the expression
(9)

E
[
a(m,n),ka

T
(m,n),k

]
= E

[
b(m,n),kb

T
(m,n),k

]
= 2(n−m)∆ωSxx

(m,n),k. (10)

Finally, resorting to the orthogonality properties of monochromatic functions, i.e.,

∫ (k+1)T0
n−m

kT0
n−m

cos
[
ωc,(m,n),k

(
t− kT0

n−m

)]
cos
[
ωc,(i,j),l

(
t− lT0

j − i

)]
dt ={

T0

2(n−m) , if (m,n) = (i, j), k = l

0 , otherwise
(11)

and

∫ (k+1)T0
n−m

kT0
n−m

sin
[
ωc,(m,n),k

(
t− kT0

n−m

)]
sin
[
ωc,(i,j),l

(
t− lT0

j − i

)]
dt ={

T0

2(n−m) , if (m,n) = (i, j), k = l

0 , otherwise
(12)

and utilizing Eqs. (9) and (10), the important for the ensuing analysis relationships

E
[
x(m,n),k(t)

]
= E

[
ẋ(m,n),k(t)

]
= E

[
ẍ(m,n),k(t)

]
= 0, (13)

E
[
x(m,n),k(t)ẋT

(m,n),k(t)
]

= E
[
ẋ(m,n),k(t)ẍT

(m,n),k(t)
]

= 0, (14)

E
[
x(m,n),k(t)xT

(m,n),k(t)
]

= 2Sxx
(m,n),k(n−m)∆ω, (15)

E
[
ẋT

(m,n),k(t)ẋT
(m,n),k(t)

]
= 2ω2

c,(m,n),kS
xx
(m,n),k(n−m)∆ω, (16)

E
[
x(m,n),k(t)ẍT

(m,n),k(t)
]

= −2ω2
c,(m,n),kS

xx
(m,n),k(n−m)∆ω, (17)

and
E
[
ẍ(m,n),k(t)ẍT

(m,n),k(t)
]

= 2ω4
c,(m,n),kS

xx
(m,n),k(n−m)∆ω, (18)

are derived; see also Refs. (9; 36; 13).
Note, in passing, that the advantages of employing the LSW representation of Eqs. (8) and (9), are the simplicity

and straightforward application of the representation model. Taking also into account its efficiency in estimating the
response EPS (9; 13), it is adopted in the ensuing analysis, where the standard harmonic-wavelet-based framework
of Ref. (13) is generalized to account for systems with singular matrices. However, it is also noted that a less
approximate stochastic process representation than that of Eq. (9) has been recently used for joint time-frequency
response analysis (37; 38). This consists in the employment of a periodized generalized harmonic wavelets (PGHWs)
based framework, and is identified as a potential future extension of the herein developed M-P generalized matrix
inverse theoretical framework.

3 Stochastic response of systems with singular matrices subjected to
non-stationary excitation

3.1 Linear systems with singular matrices
The general form of the equations of motion of a lumped-parameter n0−DOF linear system is given by

Mq̈ + Cq̇ + Kq = Q(t), (19)
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where q denotes the n0 vector of the generalized coordinates; and Q(t) represents the n0 vector of the non-stationary,
zero-mean system excitation, whose evolutionary power spectrum matrix is denoted as SQQ(ω, t). Further, M,C
and K denote the n0 × n0 mass, damping and stiffness matrices of the system. Next, adopting a redundant
coordinates modeling, a new coordinates ` vector x (` > n0), is considered. Thus, the mass, damping and stiffness
` × ` matrices are given by Mx, Cx and Kx, whereas Qx denotes the corresponding ` vector of the system
excitation. Considering additional constraints equations, Eq. (19) is recast in the form

M̄xẍ + C̄xẋ + K̄xx = Q̄x(t), (20)

where M̄x, C̄x and K̄x denote the augmented mass, damping and stiffness (m0 + `)× ` matrices, given by

M̄x =

[
(I−A+A)Mx

A

]
, (21)

C̄x =

[
(I−A+A)Cx

E

]
(22)

and

K̄x =

[
(I−A+A)Kx

L

]
, (23)

respectively; whereas Q̄x represents the augmented excitation (m0 + `) vector, given by

Q̄x =

[
(I−A+A)Qx

F

]
. (24)

Further, the m0 × ` matrices A,E and L in Eqs. (21-24) pertain to the system constraints equation

A(x, ẋ, t)ẍ = b(x, ẋ, t), (25)

where
b = F−Eẋ− Lx; (26)

details on the derivation of Eqs. (20-26) can be found in Refs. (27; 28; 29).
Next, focusing on the joint time-frequency response characterization of the system of Eq. (20), it is assumed

that the system excitation and corresponding response are modeled via the LSW representation of Eq. (8). Thus, the
augmented system of Eq. (20) becomes

M̄x

∑
(m,n)

∑
k

ẍ(m,n),k(t) + C̄x

∑
(m,n)

∑
k

ẋ(m,n),k(t) + K̄x

∑
(m,n)

∑
k

x(m,n),k(t) =
∑

(m,n)

∑
k

Q̄x,(m,n),k(t).

(27)

The localized in time and frequency domains ` vector process x(m,n),k(t) and (m0 + `) vector process Q̄x,(m,n),k(t)
of the double summations in Eq. (27), are defined in Eq. (9) as combinations of localized monochromatic functions,
i.e.,

x(m,n),k(t) = ā(m,n),k cos

[
ωc,(m,n),k

(
t− kT0

n−m

)]
+ b̄(m,n),k sin

[
ωc,(m,n),k

(
t− kT0

n−m

)]
(28)

and

Q̄x,(m,n),k(t) = e(m,n),k cos

[
ωc,(m,n),k

(
t− kT0

n−m

)]
+ f(m,n),k sin

[
ωc,(m,n),k

(
t− kT0

n−m

)]
. (29)

The terms ā(m,n),k, b̄(m,n),k and e(m,n),k, f(m,n),k in Eqs. (28-29) correspond to statistically independent zero-
mean random (m0 + `) vectors, whose variance is given by Eq. (10). Substituting Eqs. (28-29) in Eq. (27), and
manipulating, yields

ω4
c,(m,n),kM̄xSxx

(m,n),kM̄
T
x + ω2

c,(m,n),kC̄xSxx
(m,n),kC̄

T
x + K̄xSxx

(m,n),kK̄
T
x

− ω2
c,(m,n),kM̄xSxx

(m,n),kK̄
T
x − ω2

c,(m,n),kK̄xSxx
(m,n),kM̄

T
x = SQ̄xQ̄x

(m,n),k, (30)
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where SQ̄xQ̄x

(m,n),k denotes the excitation EPS (m0 + `)× (m0 + `) matrix, and Sxx
(m,n),k denotes the corresponding

response EPS `× ` matrix, both defined at different frequency and time bands. Further, manipulating Eq. (30), the
expression

RxSxx
(m,n),k

[
−ω2

c,(m,n),kM̄
T
x − iωc,(m,n),kC̄

T
x + K̄T

x

]
= SQ̄xQ̄x

(m,n),k, (31)

is derived, where the (m0 + `)× ` matrix Rx has the form

Rx =
[
−ω2

c,(m,n),kM̄x + iωc,(m,n),kC̄x + K̄x

]
. (32)

In Eq. (32), M̄x, C̄x and K̄x denote the (m0 + `) × ` augmented mass, damping and stiffness matrices of Eqs.
(21-23), whereas ωc,(m,n),k represents the central frequency of Eq. (6).

Note, in passing, that using the minimum number of generalized coordinates for the formulation of the system
governing equations of motion (see Eq. (19)), results in non-singular mass, damping and stiffness matrices. This,
in turn, facilitates the derivation of a closed form, wavelet-coefficient-based excitation-response relationship.
Specifically, for the system of Eq. (19) it holds (13)

Sqq
(m,n),k = H[ωc,(m,n),k]SQQ

(m,n),kH[ωc,(m,n),k]T∗, (33)

where
H[ωc,(m,n),k] =

[
−ω2

c,(m,n),kM + iωc,(m,n),kC + K
]−1

(34)

is the localized harmonic-wavelet-based, frequency response function (HW-FRF). Clearly, the definition of the
HW-FRF relies on the existence of the inverse matrix of Eq. (34). Thus, it is readily seen that following a redundant
DOFs modeling approach, the singular mass, damping and stiffness matrices of Eqs. (21-23), hinder the derivation of
the corresponding HW-FRF. However, employing elements of M-P generalized matrix inverse theory, a generalized
HW-FRF is proposed herein to account for the case of systems with singular matrices.

In this regard, utilizing Eq. (3), the solution to Eq. (31) takes the form

Sxx
(m,n),k

[
−ω2

c,(m,n),kM̄
T
x − iωc,(m,n),kC̄

T
x + K̄T

x

]
= R+

x SQ̄xQ̄x

(m,n),k + (I` −R+
x Rx)Y, (35)

where R+
x denotes the `× (m0 + `) M-P inverse of Rx, and Y is an arbitrary `× (m0 + `) matrix. Clearly, the

arbitrary matrix Y implies a family of solutions for Eq. (35), instead of a unique solution. Nevertheless, the rank of
matrix Rx facilitates the selection of a unique solution. Specifically, when Rx has full column rank, i.e., it has
linearly independent columns, its M-P inverse takes the form (32)

R+
x = (R∗xRx)−1R∗x, (36)

where R∗x corresponds to the conjugate matrix of Rx. Thus, taking into account Eq. (36), Eq. (35) is equivalently
written as

Sxx
(m,n),k

[
−ω2

c,(m,n),kM̄
T
x − iωc,(m,n),kC̄

T
x + K̄T

x

]
= R+

x SQ̄xQ̄x

(m,n),k. (37)

Further, applying the conjugate and transpose operations on both sides of Eq. (32) implies[
−ω2

c,(m,n),kM̄
T
x − iωc,(m,n),kC̄

T
x + K̄T

x

]
= R∗Tx . (38)

Also, noting that for full column rank matrix Rx, its conjugate transpose R∗Tx has full row rank, i.e., its rows are
linearly independent, results in (32)

R∗Tx
(
R∗Tx

)+
= Im+`. (39)

Therefore, taking into account Eqs. (38) and (39), and also denoting by
αx[ωc,(m,n),k] the M-P inverse of matrix Rx of Eq. (32), i.e.,

αx[ωc,(m,n),k] =
[
−ω2

c,(m,n),kM̄x + iωc,(m,n),kC̄x + K̄x

]+
, (40)

Eq. (37) becomes
Sxx

(m,n),k = αx[ωc,(m,n),k]SQ̄xQ̄x

(m,n),k

(
αx[ωc,(m,n),k]

)T∗
. (41)

Matrixαx[ωc,(m,n),k] of Eq. (40) represents a generalization of the localized in time and frequency HW-FRF matrix
H
[
ωc,(m,n),k

]
(see Eq. (34)). In this regard, the herein proposed approach can be construed as a generalization of

the results in Ref. (13), for deriving the response evolutionary power spectrum (EPS) of linear MDOF systems with
singular matrices.
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3.2 Nonlinear systems with singular matrices
In this section, aiming at the response EPS determination of MDOF chain-like nonlinear structural systems with
singular matrices, a recently proposed, harmonic-wavelet-based version of the statistical linearization methodology
(9; 13) is extended. Statistical linearization constitutes one of the most versatile approximate techniques for nonlinear
system response determination and/or characterization (2; 39), with a wide variety of applications over the last
decades. It has been successfully adapted and/or extended for application in conjunction with fractional calculus
(40; 41; 10) and wavelet-based solutions frameworks (9), among others. The method is applied in two steps, which
are summarized as follows. First, the original nonlinear system is replaced with an equivalent linear one, and then,
the error between the two systems is formed and minimized (2). Based on the fact that solution frameworks for
treating the equivalent linear system are readily available, the rationale behind the method is that the latter can be
used as approximations to the solution of the original nonlinear system.

In this regard, adopting a redundant coordinates modeling (27; 28), the equations of motion for the nonlinear
version of the system of Eq. (20) takes the form

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ) = Q̄x(t), (42)

where the augmented mass, damping, stiffness matrices and excitation vector are given by Eqs. (21-23) and Eq.
(24), respectively. Further, the augmented nonlinear (m0 + `) vector of the system, which depends on the response
displacement x and the response velocity ẋ, is given by (28)

Φ̄x =

[
(I−A+A)Φx

0

]
. (43)

In Eq. (43), Φx denotes the nonlinear ` vector of the system governing equations of motion, due to adopting a
redundant coordinates modeling (28).

Next, considering the LSW representation of Eq. (8) for the system excitation x(t), and thus assuming that x(t)
is represented by the sum of its wavelet coefficients, an equivalent to Eq. (42) linear MDOF system is defined as

M̄xẍ +
∑

(m,n)

∑
k

C̄eq,(m,n),kẋ(m,n),k +
∑

(m,n)

∑
k

K̄eq,(m,n),kx(m,n),k = Q̄x(t). (44)

In Eq. (44), C̄eq,(m,n),k and K̄eq,(m,n),k denote the (m0 + `)× ` equivalent linear damping and stiffness matrices,
which account for the nonlinearity of the nonlinear system of Eq. (42), and are both time and frequency dependent.
Continuing with the application of the statistical linearization method, the error function ε is formed as the difference
between the original nonlinear system of Eq. (42), and its linear equivalent Eq. (44), i.e.,

ε = Φ̄x

∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

+ C̄x

∑
(m,n)

∑
k

ẋ(m,n),k + K̄x

∑
(m,n)

∑
k

x(m,n),k

−
∑

(m,n)

∑
k

C̄eq,(m,n),kẋ(m,n),k −
∑

(m,n)

∑
k

K̄eq,(m,n),kx(m,n),k. (45)

It is noted that for the formulation of Eq. (45), Eq. (42) is also expressed in terms of the LSW representation
of Eq. (8). Then, the error function Eq. (45) is minimized by considering the orthogonality properties of the
monochromatic functions at a given frequency band and time location (see Eqs. (11-12)). Specifically, Eq. (45) is
first post-multiplied by the transpose of the response displacement vector x(m,n),k. Subsequently, integrating with
respect to time and ensemble averaging results in zero average error, i.e.,

E

[∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

xT
(m,n),kdt

+(C̄x − C̄eq,(m,n),k)

∫ (k+1)T0
n−m

kT0
n−m

ẋ(m,n),kx
T
(m,n),kdt

+(K̄x − K̄eq,(m,n),k)

∫ (k+1)T0
n−m

kT0
n−m

x(m,n),kx
T
(m,n),kdt

]
= 0.

(46)



3 Stochastic response of systems with singular matrices subjected to non-stationary excitation 8

In a similar manner, Eq. (45) also yields

E

[∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

∑
(m,n)

∑
k

ẋ(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

 ẋT
(m,n),kdt

+(C̄x − C̄eq,(m,n),k)

∫ (k+1)T0
n−m

kT0
n−m

ẋ(m,n),kẋ
T
(m,n),k

+(K̄x − K̄eq,(m,n),k)

∫ (k+1)T0
n−m

kT0
n−m

x(m,n),kẋ
T
(m,n),k

]
= 0.

(47)

Further, Eqs. (46) and (47) can be equivalently written as

E

[∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

xT
(m,n),kdt

]
+4π(K̄x − K̄eq,(mi,ni),k)Sxx

(mi,ni),k
= 0

(48)

and

E

[∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

∑
(m,n)

∑
k

ẋ(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

 ẋT
(m,n),kdt

]
+4π(C̄x − C̄eq,(mi,ni),k)Sẋẋ

(mi,ni),k
= 0.

(49)

Eqs. (48) and (49) connect, in essence, the localized in frequency and time intervals m∆ω ≤ ω < n∆ω and
kT0

n−m ≤ t <
(k+1)T0

n−m , response EPS Sẋẋ
(mi,ni),k

and Sxx
(mi,ni),k

, with the corresponding localized equivalent linear
elements C̄eq,(m,n),k and K̄eq,(m,n),k. Furthermore, taking into account Eqs. (13-18), Sẋẋ

(mi,ni),k
in Eq. (49) can

be replaced by Sxx
(mi,ni),k

. In this regard, Eqs. (48) and (49), together with Eq. (41), form a coupled system of
nonlinear equations to be solved for determining C̄eq,(m,n),k and K̄eq,(m,n),k, and the response EPS Sxx

(mi,ni),k
.

For the solution of the coupled system of equations, the following iterative scheme can be applied (9; 13). First,
initial values for the equivalent elements C̄eq,(m,n),k and K̄eq,(m,n),k are considered, and solving Eq. (41), initial
values for Sxx

(mi,ni),k
are derived. Then, the latter is used in conjunction with Eqs. (48-49) for updating the values of

the equivalent elements C̄eq,(m,n),k and K̄eq,(m,n),k. The process repeats until convergence.
Next, considering the case of polynomial kind nonlinearities, the described statistical linearization methodology

results in closed form solutions for determining the equivalent linear elements. This assumption is considered not
only for facilitating the ensuing derivation of the closed form solutions, i.e., for simplicity reasons, but also due to
its practical merit, as nonlinearities of this kind are often met in structural engineering applications (2; 13; 38). In
this regard, considering a redundant coordinates modeling of the equations of motion given by Eq. (19), the cubic
nonlinearity ` vector is written in the form

Φx =

ε1k1x
3
1

...
ε`k`x

3
`

+

λ1c1ẋ
3
1

...
λ`c`ẋ

3
`

 , (50)

where εi and λi, for i = 1, 2, . . . , `, denote the magnitude of the nonlinearity for the stiffness and damping of the
system, respectively.

Further, considering the augmented nonlinear vector Φ̄x of Eq. (43) in conjunction with Eqs. (48-49), closed
form expressions are derived for the augmented equivalent (m0 + `) × ` elements C̄eq,(m,n),k and K̄eq,(m,n),k.
These are expressed in terms of summations of the response EPS over all (mi, ni) at a specific k, and for all pairs of
(m,n) and k. Specifically, for the determination of the equivalent damping element, taking into account Eqs. (43)
and (50), Eq. (49) implies

Dd + (C̄x − C̄eq,(mi,ni),k)S̃ẋẋ
(mi,ni),k

= 0, (51)

where Dd is an (m0 + `)× ` matrix whose entries depend on the damping nonlinearity, as well as on the system
constraints defined in Eq. (25); and S̃ẋẋ

(mi,ni),k
denotes the local auto/cross EPS ` × ` matrix of the response
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velocity process ẋ(m,n),k. It is noted that, in contrast to the standard linearization approach of Ref. (13) where
the corresponding local auto/cross EPS matrix is diagonal, matrix S̃ẋẋ

(mi,ni),k
of Eq. (51) potentially has some

non-zero off-diagonal entries. This is due to the redundant DOFs employed in the system modeling. Specifically, the
dependence between the redundant DOFs which form the coordinates vector x implies linear dependence between
some of the columns of matrix S̃ẋẋ

(mi,ni),k
. Therefore, S̃ẋẋ

(mi,ni),k
is singular, and thus, in order to derive a closed

form expression for the equivalent damping element, a special treatment is required for solving Eq. (51).
In this regard, taking into account Eq. (3), Eq. (51) implies

C̄eq,(mi,ni),k = Dd

(
S̃ẋẋ

(mi,ni),k

)+

+ C̄x +

{(
(I` −

(
(S̃ẋẋ

(mi,ni),k
)T
)+

(S̃ẋẋ
(mi,ni),k

)T

)
Y1

}T

, (52)

where Y1 is a (m0 + `)× ` matrix of arbitrary elements. In a similar manner, taking into account Eqs. (43) and
(50), Eq. (49) yields

K̄eq,(mi,ni),k = Ds

(
S̃xx

(mi,ni),k

)+

+ K̄x +

{(
(I` −

(
(S̃xx

(mi,ni),k
)T
)+

(S̃xx
(mi,ni),k

)T

)
Y2

}T

. (53)

In this case, Ds is an (m0 + `)× ` matrix whose entries depend on the stiffness nonlinearity and the constraints of
Eq. (25), whereas S̃xx

(mi,ni),k
denotes the local auto/cross EPS `× ` matrix of the response displacement x(m,n),k;

Y2 is a (m0 + `)× ` matrix of arbitrary elements.
Clearly, due to the arbitrary matrices Y1 and Y2, Eqs. (52) and (53) form a family of solutions, while C̄eq,(m,n),k

and K̄eq,(m,n),k correspond to the unique damping and stiffness matrices of the equivalent linear system defined
in Eq. (44). However, taking into account that the M-P generalized matrix inverse framework employed in the
derivation of Eqs. (52) and (53) corresponds, in essence, to the solution of a quadratic (least squares) optimization
problem, it is feasible to select a unique solution for each of the equivalent elements. In this regard, the intuitively
simplest solution among the family of solutions, which also coincides with the minimal mean square solution of the
quadratic problem above (32), is considered. Thus, setting the arbitrary matrices Y1 and Y2 equal to null matrix,
Eqs. (52) and (53) become

C̄eq,(mi,ni),k = Dd

(
S̃ẋẋ

(mi,ni),k

)+

+ C̄x (54)

and
K̄eq,(mi,ni),k = Ds

(
S̃xx

(mi,ni),k

)+

+ K̄x, (55)

respectively. Clearly, Eqs. (54) and (55) define a unique solution for the equivalent damping and stiffness elements,
respectively. Further, they constitute a generalization of the corresponding results in Ref. (13), to account for
systems with singular matrices and polynomial kind nonlinearities, subjected to non-stationary excitation.

4 Numerical examples

4.1 Non-stationary stochastic excitation
The considered in the ensuing numerical examples MDOF systems, are subjected to non-stationary stochastic
excitation described by non-separable, evolutionary power spectra of the form

S(ω, t) = S0

( ω
5π

)2

exp(−c0t)t2 exp

(
−
( ω

5π

)2

t

)
, (56)

where S0, c0 ∈ R. Eq. (56), firstly introduced in Ref. (42), is used as an indicative seismic excitation, since it
encloses the main “build-up” and “die-off” characteristics of the ground motion, while its dominant frequency
decreases with time (43; 44; 10). The spectral representation method is employed for deriving compatible to the
EPS of Eq. (56) realizations ((45)) and the response EPS is obtained by averaging the mean square magnitude of
the corresponding wavelet coefficients (9), i.e.,

S(ω, tk) =
T0

2π(n−m)
E
[
|WG

(m,n),k |
2
]
. (57)

The parameter value n −m = 5 is used in the ensuing analysis. Moreover, the Mean Instantaneous Frequency
(MIF) given by

MIF(t) =

∫
ω
ωS(t, ω)dω∫
ω
S(t, ω)dω

(58)

is included in the ensuing analysis for capturing the evolution of the “effective instantaneous frequency” for the
non-stationary system response (46).
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4.2 Linear systems with singular matrices
For the assessment of the herein proposed solution framework, the EPS for each DOF of the 3−DOF linear system
depicted in Fig. 1, is determined. The system consists of three masses m1, m2 and m3 interconnected with linear
springs and dampers. In particular, mass m1 is connected to the foundation by a linear spring and a linear damper
with stiffness and damping coefficients k1 and c1, respectively, and to masses m2 and m3 by linear springs with
stiffness coefficients k2 and k4. Further, mass m2 is connected to mass m3 by a linear spring of stiffness coefficient
k3 and a linear damper of damping coefficient c2. The system is subjected to random force Q1(t) which is applied
on mass m1, and to random force Q3(t) applied on mass m3, which are both described by the EPS of Eq. (56).

Fig. 1: Three degree-of-freedom system subjected to non-stationary stochastic excitation.

Following, a standard Newtonian approach for the formulation of the system governing equations of motion,
and considering the (generalized) coordinates vector qT =

[
q1 q2 q3

]
, the mass, damping and stiffness matrices

are given by

Mq =

m1 0 0
0 m2 0
0 0 m3

 ,Cq =

c1 0 0
0 c2 −c2
0 −c2 c2

 (59)

and

Kq =

k1 + k2 + k4 −k2 −k4

−k2 k2 + k3 −k3

−k4 −k3 k3 + k4

 , (60)

respectively. Next, considering a relative displacement modeling, the coordinates vector yT =
[
y1 y2 y3

]
is

defined. Vector y denotes the relative displacement between the adjacent DOFs (2), i.e.,

y1 = q1, y2 = q2 − q1, y3 = q3 − q2. (61)

Thus, the mass, damping and stiffness matrices in the relative coordinates system take the form

M =

m1 0 0
m2 m2 0
m3 m3 m3

 ,C =

c1 0 0
0 0 −c2
0 0 c2

 (62)

and

K =

k1 −k2 − k4 −k4

0 k2 −k3

0 k4 k3 + k4

 , (63)

respectively. Finally, the excitation vector Q(t) is given by

Q =

Q1(t)
0

Q3(t)

 , (64)

where Q1(t) = Q3(t) = Q(t). Further, assuming the system and excitation parameter values m1 = m2 = m3 = 1,
c1 = c2 = 4.3, c3 = 1.4, k1, k2, k3 = 256, k4 = 64 and S0 = 10, c0 = 0.15, and resorting to Eq. (33-34), the
generalized response spectra are estimated. The response EPS for each DOF of the system of Fig. 1 is depicted in
Figs. 2(a)-2(c). Also, the MIF of Eq. (58) is included for each DOF.

Next, the herein proposed methodology for deriving the EPS of the system response is applied to the system of
Fig. 1. In this regard, adopting a redundant coordinates modeling of the equations of motion, the 3−DOF system is
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(a)

(b)

(c)

Fig. 2: Response EPS of the linear system of Fig. 1, subject to non-stationary excitation (S0 = 10, c0 = 0.15). (a)
1st DOF y1 of the system. (b) 2nd DOF y2 of the system. (c) 3rd DOF y3 of the system.
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decomposed into its component subsystems, as shown in Fig. 3. This is attained by considering the coordinates
vector

x =


x̄1

x2

x̄3

x4

x̄5

 , (65)

where x̄1, x̄3 and x̄5 denote the displacements of masses m1,m2 and m3, respectively; and x2, x4 correspond to
the redundant DOFs which, in essence, account for the constraints connecting the partial subsystems (see Fig. 3). It
holds

x1 + d = x2 (66)

and
x2 + x3 + d = x4, (67)

where d is the physical length of each mass mi, i = 1, 2, 3. Taking into account the geometry of the system in Fig.
3, as well as Eqs. (66-67), the expressions

x̄1 + l1,0 + d = x2 (68)

and
x2 + x̄3 + l3,0 + d = x4, (69)

where li is the unstretched length of the spring for the mass mi (i = 1, 2, 3), form a set of equations which connect
the system constraints with the redundant coordinates. Specifically, differentiating twice with respect to time Eqs.
(68)-(69), the 2× 5 matrix A of Eq. (25) and the 2−vector b of Eq. (26) take the form

A =

[
1 −1 0 0 0
0 1 1 −1 0

]
(70)

and

b =

[
0
0

]
, (71)

respectively.

Fig. 3: Modeling the three degree-of-freedom system of Fig. 1 by using redundant coordinates.

In this regard, the equations of motion are formed, and the augmented mass, damping and stiffness 7×5 matrices
of Eqs. (21-23) become

M̄x =



0.4 0.2 0.2 0.2 0.2
0.4 0.2 0.2 0.2 0.2
−0.2 0.4 0.4 0.4 0.4
0.2 0.6 0.6 0.6 0.6
0 0 0 1 1
1 −1 0 0 0
0 1 1 −1 0


, C̄x =



1.72 0 0 0 0
1.72 0 0 0 0
−0.86 0 0 0 0
0.86 0 0 0 0

0 0 0 0 4.30
0 0 0 0 0
0 0 0 0 0


(72)
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and

K̄x =



102.4 12.8 −51.2 −12.8 −12.8
102.4 12.8 −51.2 −12.8 −12.8
−51.2 −38.4 153.6 38.4 38.4
51.2 −25.6 102.4 25.6 25.6

0 −64 0 64 320
0 0 0 0 0
0 0 0 0 0


, (73)

respectively; whereas the augmented excitation vector of Eq. (24) takes the form

Q̄x =



0.6Q(t)
0.6Q(t)
0.2Q(t)
0.8Q(t)
Q(t)

0
0


. (74)

Next, the 7× 5 matrix Rx is formed, for which rank(Rx) = 5. Therefore, utilizing the input-output expression
of Eq. (41), and taking into account the M-P HW-FRF of Eq. (40), the response EPS for x̄1, x̄3 and x̄5 of the
equivalent linear system, is obtained in an analytical manner. The corresponding results, along with the MIF of Eq.
(58), are plotted in Figs. 4(a), 4(b) and 4(c). Comparing Fig. 4(a) with Fig. 2(a), Fig. 4(b) with Fig. 2(b), and Fig.
4(c) with Fig. 2(c), it is seen that the results obtained by applying the herein proposed M-P inverse framework are
in agreement with those obtained by following the standard formulation. This is also deduced by Fig. 5, where
the response EPS for each DOF of the two systems (Fig. 1 and Fig. 3) is determined for both formulations, and is
plotted at different time instants (t = 5.8s and t = 12s). In this regard, it can be argued that the herein proposed
approach constitutes a generalized matrix inverses extension of the harmonic-wavelet-based technique of Ref. (13).

4.3 Nonlinear systems with singular matrices
The 2−DOF chain-like structural nonlinear system of rigid masses m1 and m2 that is shown in Fig. 6 is considered
for demonstrating the efficiency of the linearization scheme. Mass m1 is connected to the foundation by a nonlinear
spring of linear-plus-cubic type, and a nonlinear damper of the same nonlinearity type. Further, mass m1 is
connected to mass m2 by corresponding linear spring and damper with stiffness and damping coefficients k2 and
c2, respectively. The nonlinearity magnitude of the nonlinear spring is denoted by ε1, whereas λ1 denotes the
nonlinearity magnitude of the nonlinear damper. The system is subjected to non-stationary stochastic excitations
Q1(t) and Q2(t), both described by a non-separable EPS of the form given by Eq. (56).

Next, the system governing equations of motion are derived. In this regard, the generalized coordinates y1, y2

are utilized, and relative displacements are introduced for facilitating the ensuing analysis. Thus, the mass, damping
and stiffness matrices for the system of Fig. 6 are given by (2)

M =

[
m1 0
m2 m2

]
, C =

[
c1 −c2
0 c2

]
(75)

and

K =

[
k1 −k2

0 k2

]
, (76)

respectively. Further, the system nonlinearity is written in the vector form

Φ =

[
ε1k1y

3
1 + λ1c1ẏ

3
1

0

]
(77)

and the system excitation is

Q(t) =

[
Q1

Q2

]
. (78)

Then, the standard linearization approach of Ref. (13) is followed for determining the response EPS. In this
regard, the equivalent linear elements Ceq,(mi,ni),k and Keq,(mi,ni),k are given by

Ceq,(mi,ni),k = 6(n−m)∆ω

[
λ1c1

∑
j S

ẏ1ẏ1
(mj ,nj),k 0

0 0

]
+ C (79)
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(a)

(b)

(c)

Fig. 4: Response EPS of the linear system of Fig. 3, subject to non-stationary excitation (S0 = 10, c0 = 0.15). (a)
1st DOF x̄1 of the system. (b) 3rd DOF x̄3 of the system. (c) 5th DOF x̄5 of the system.
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(a) (b)

(c)

Fig. 5: Response EPS of the linear system of Fig. 3 at time instants t = 5.8s and t = 12s, subject to non-stationary
stochastic excitation (S0 = 10, c0 = 0.15). Comparison between standard formulation and the proposed
technique. (a) 1st DOF (y1 vis-à-vis x̄1); (b) 2nd DOF (y2 vis-à-vis x̄3); (c) 3rd DOF (y3 vis-à-vis x̄5).
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Fig. 6: Two degree-of-freedom nonlinear structural system subjected to non-stationary stochastic excitation

and

Keq,(mi,ni),k = 6(n−m)∆ω

[
ε1k1

∑
j S

y1y1
(mj ,nj),k 0

0 0

]
+ K, (80)

respectively. Further, the system parameter values mi = 1, ci = 4.3 and ki = 256 (i = 1, 2), and the nonlinearity
magnitude parameters ε1 = 2, λ1 = 0.5 are considered. It is also assumed for simplicity that Q1(t) = Q2(t) =
Q(t) and the excitation parameter values are S0 = 10 and c0 = 0.15. Thus, solving the nonlinear set of equations
formed by Eqs. (79-80) and Eqs. (33-34), leads to determining the evolutionary response power spectrum for the
2−DOF system of Fig. 6. Figs. 7(a) and 7(b) represent the results for the generalized coordinates y1 and y2, also
including the corresponding MIF.

Next, employing a redundant coordinates modeling for the formulation of the system governing equations of
motion, the 2−DOF system of Fig. 6 is decomposed in its partial subsystems, as shown in Fig. 8. The independent
coordinates x̄1, x2 and x̄3 describe the equations of motion of the two subsystems, which are also connected to each
other by the constraint equation

x2 = x̄1 + l0 + d, (81)

where l0 is the unstreched length of the spring k1 and d the physical length of mass m1. Note, in passing, that the
equations of motion for the system of Fig. 8 are formed in terms of relative coordinates, and thus, the connection
between the independent coordinates x̄1, x̄3 and the generalized coordinates y1, y2 for the two different formulations
are given by x̄1 = y1 and x̄3 = y2, respectively. Further, twice differentiating the system constraint equations,
which are described by Eq. (81), matrix A of Eq. (25) becomes

A =
[
1 −1 0

]
, (82)

whereas taking into account Eq. (26), E = L = 0 and b = 0.
Deriving the system governing equations of motion, the augmented mass, damping and stiffness matrices of

Eqs. (21-23) take the form

M̄x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 , C̄x =


2.15 0 0
2.15 0 0

0 0 4.3
0 0 0

 (83)

and

K̄x =


128 0 0
128 0 0
0 0 256
0 0 0

 , (84)

respectively. Finally, the augmented system nonlinear vector defined in Eq. (43) is given by

Φ̄x =


0.5ε1k1x̄

3
1 + 0.5λ1c1 ˙̄x3

1

0.5ε1k1x̄
3
1 + 0.5λ1c1 ˙̄x3

1

0
0

 , (85)

whereas the augmented excitation vector of Eq. (24) is given by

Q̄x =


Q1

Q2

Q2

0

 . (86)
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(a)

(b)

Fig. 7: Response EPS of the nonlinear structural system of Fig. 6, subject to non-stationary stochastic excitation
(S0 = 10, c0 = 0.15). (a) 1st DOF y1 (ε1 = 2, λ1 = 0.5); (b) 2nd DOF y2.
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Fig. 8: Modeling the two degree-of-freedom system of Fig. 6 by using redundant coordinates.

Taking into account the system nonlinearity of Eq. (85), as well as the constraints expression of Eq. (81),
matrices Dd and S̃ẋẋ

(mi,ni),k
in Eq. (51) become

Dd =


d1,(m,n),k d1,(m,n),k 0 0
d1,(m,n),k d1,(m,n),k 0 0

0 0 0 0
0 0 0 0

 (87)

and

S̃ẋẋ
(mi,ni),k

=

s1,(m,n),k s1,(m,n),k 0
s1,(m,n),k s1,(m,n),k 0

0 0 s3,(m,n),k

 , (88)

respectively, where

d1,(m,n),k = E[(ẋ1,(m,n),k)4] + 3
∑

(i,j),i6=m,j 6=n

E[(ẋ1,(m,n),k)2]E[(ẋ1,(i,j),k)2] (89)

and
sρ,(m,n),k = E[(ẋi,(m,n),k)2], ρ = 1, 3. (90)

Further, the M-P inverse of matrix S̃ẋẋ
(mi,ni),k

in Eq. (88) is given by (47)

(S̃ẋẋ
(mi,ni),k

)+ =

0.25s−1
1,(m,n),k 0.25s−1

1,(m,n),k 0

0.25s−1
1,(m,n),k 0.25s−1

1,(m,n),k 0

0 0 s−1
3,(m,n),k

 . (91)

Thus, substituting Eqs. (87) and (91) into Eq. (54), and manipulating, yields

C̄eq,(mi,ni),k = 6(n−m)∆ω


λ1c1

2

∑
j S

˙̄x1 ˙̄x1

(mj ,nj),k
λ1c1

2

∑
j S

˙̄x1 ˙̄x1

(mj ,nj),k 0
λ1c1

2

∑
j S

˙̄x1 ˙̄x1

(mj ,nj),k
λ1c1

2

∑
j S

˙̄x1 ˙̄x1

(mj ,nj),k 0

0 0 0
0 0 0

+ C̄x. (92)

In a similar manner, the augmented equivalent linear stiffness elements are derived in closed form at each frequency
band (n−m) and time level k, as functions of the localized response EPS. They are given by

K̄eq,(mi,ni),k = 6(n−m)∆ω


ε1k1

2

∑
j S

x̄1x̄1

(mj ,nj),k
ε1k1

2

∑
j S

x̄1x̄1

(mj ,nj),k 0
ε1k1

2

∑
j S

x̄1x̄1

(mj ,nj),k
ε1k1

2

∑
j S

x̄1x̄1

(mj ,nj),k 0

0 0 0
0 0 0

+ K̄x. (93)
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(a)

(b)

Fig. 9: Response EPS of the nonlinear structural system of Fig. 8 subject to non-stationary stochastic excitation
(S0 = 10, c0 = 0.15). (a) 1st DOF x̄1 (ε1 = 2, λ1 = 0.5); (b) 2nd DOF x̄3.

Noticing that the matrix Rx of Eq. (32) has full rank, and thus, that the M-P HW-FRF of Eq. (40) holds,
the estimation of the response EPS is attained by resorting to the recurcive linearization scheme which is applied
to the nonlinear set of Eqs. (92-93) and Eqs. (40-41). The linearization process is initialized by considering the
linear system response EPS, and continues until convergence. The scheme stops when the maximum values of
the percentile difference of the equivalent elements over all frequency bands and time levels become smaller than
10−5. In this regard, the estimated response EPS for the first DOF x̄1 is depicted in Fig. 9(a), whereas Fig. 9(b)
shows the corresponding EPS for the independent to x̄1, coordinate x̄3. The MIF of Eq. (58) is also plotted in the
figures for completeness. Comparing Figs. 9(a) and 9(b) with Figs. 7(a) and 7(b), respectively, it is seen that the
corresponding results are in total agreement. This is also highlighted by Fig. 10, where the results obtained by
applying the standard and alternative approaches are plotted for different time instants (t = 5s and t = 10s). Thus,
it is concluded that the herein developed M-P harmonic-wavelet-based statistical linearization scheme constitutes
a generalization of the results in Ref. (13), to account for the case of systems with singular matrices subjected to
non-stationary excitation.

5 Conclusion

In this paper, a generalized inverse matrix harmonic-wavelet-based technique has been developed for determining
the response evolutionary power spectrum (EPS) of stochastically excited multi-degree-of-freedom (MDOF) linear
and nonlinear structural systems with singular matrices. The singular matrices appear in the system governing
equations of motion due to adopting a redundant coordinates modeling for their formulation. It can be argued, that
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(a) (b)

Fig. 10: Response EPS of the nonlinear structural system of Figs. 6 and 8 at time instants t = 5s and t = 10s,
subject to non-stationary stochastic excitation (S0 = 10, c0 = 0.15). Comparison between standard
formulation and the proposed technique. (a) 1st DOF (y1 vis-à-vis x̄1); (b) 2nd DOF (y2 vis-à-vis x̄3).

this approach relates to solutions of reduced computational cost, as well as enhanced modeling flexibility when
the problem of forming the equations of motion of complex multibody systems is considered. However, singular
matrices also hinder the application of standard solution treatments for estimating the system response EPS. In this
regard, resorting to the Moore-Penrose (M-P) matrix inverse theory in conjunction with the generalized harmonic
wavelets theory, a solution framework is developed herein for determining the evolutionary response spectra of such
systems. Specifically, adopting the locally stationary wavelet representation of a stochastic process, and relying on
the theory of the M-P generalized inverse of a singular matrix, an M-P localized in time and frequency, harmonic-
wavelet-based frequency response function (M-P HW-FRF) has been constructed. Subsequently, employing the
novel M-P HW-FRF, an input-output formula for determining the EPS of the system response has been derived. This
can be construed as a generalization of a recently developed harmonic-wavelet-based input-output formula (13), to
account for the case of systems with singular matrices. Further, for the case of nonlinear systems of this kind, a
recently derived harmonic-wavelet-based statistical linearization technique (13) has also been generalized. First, an
equivalent linear to the original nonlinear system has been defined. Subsequently, closed form solutions have been
derived for the time and frequency dependent equivalent linear elements, and the equivalent linear system EPS has
been estimated by resorting to the solution of a nonlinear set of equations. A linear and a nonlinear MDOF systems
with singular matrices have been considered as numerical examples for assessing the validity of the developed
methodology. The applicability of the proposed method to systems subject to a broad category of non-stationary
excitations has been highlighted by considering excitations described by evolutionary non-separable spectra.
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