Logo Leibniz Universität Hannover
Logo: Institut für Risiko und Zuverlässigkeit
Logo Leibniz Universität Hannover
Logo: Institut für Risiko und Zuverlässigkeit
  • Zielgruppen
  • Suche
 

Publikationen

Suche nach
in in allen Feldern AutorTitelBeschreibung
Kategorie
Jahr
 

2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 alle Jahre

Buchbeiträge

Beer, M.; Gong, Z.T.; Neumann, I.; Sriboonchitta, S.; Kreinovich, V. (2018): What If We Do Not Know Correlations?, In: Anh, L.H.; Dong, L.S.; Kreinovich, V.; Nguyen, N.T. (eds.), Econometrics for Financial Applications, Springer, Cham, Switzerland, in press

Journal-Artikel

Mitseas, I.P; Kougioumtzoglou, I.A.; Giaralis, A.; Beer, M. (2018): A novel stochastic linearization framework for seismic demand estimation of hysteretic MDOF systems subject to linear response spectra, Structural Safety, 72: 84-98
DOI: 10.1016/j.strusafe.2017.12.008

Rocchetta, R.; Broggi, M.; Huchet, Q.; Patelli, E. (2018): On-line Bayesian model updating for structural health monitoring, Mechanical Systems and Signal Processing; 103: 174-195
DOI: 10.1016/j.ymssp.2017.10.015

Zhong, S.; Pantelous, A.A.; Beer, M.; Zhou, J. (2018): Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms, Mechanical Systems and Signal Processing, 104: 347-369
DOI: 10.1016/j.ymssp.2017.10.035

Rocchetta, R.; Broggi, M.; Patelli, E. (2018): Do we have enough data? Robust reliability via uncertainty quantification, Applied Mathematical Modelling, 54: 710-721
DOI: 10.1016/j.apm.2017.10.020

Zhang, Y.J.; Comerford, L.A.; Kougioumtzoglou, I.A.; Beer, M. (2018): Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data, Mechanical Systems and Signal Processing, 101, 361–376
DOI: 10.1016/j.ymssp.2017.08.017

Zhong, S.Y.; Pantelous, A.A.; Beer, M.; Zhou, J. (2018): Constrained Non-linear Multi-objective Optimization of Preventive Maintenance Scheduling for Offshore Wind Farms, Mechanical Systems and Signal Processing, 104, 347–369
DOI: 10.1016/j.ymssp.2017.10.035