A polynomial expansion approach for response analysis of periodical composite structural–acoustic problems with multi-scale mixed aleatory and epistemic uncertainties

verfasst von
Ning Chen, Yingbin Hu, Dejie Yu, Jian Liu, Michael Beer
Abstract

The response analysis of periodical composite structural–acoustic problem with multi-scale mixed aleatory and epistemic uncertainties is investigated based on homogenization method in this paper. The aleatory uncertainties are presented by bounded random variables, whereas the epistemic uncertainties are presented by interval variables and evidence variables. When dealing with the combination of bounded random variables, interval variables and evidence variables, enormous computation is needed to estimate the output probability bounds of the sound pressure response of the periodical composite structural–acoustic system. To reduce the involved computational cost but without losing accuracy, by transforming all of the bounded random variables and interval variables into evidence variables appropriately, an evidence-theory-based polynomial expansion method (EPEM) is developed in which the Gegenbauer series expansion is employed to approximate the variation range of the response with respect to evidence variables. By using EPEM, the probability bounds of the response can be obtained efficiently. A numerical example is used to validate the proposed method and two engineering examples are given to demonstrate its efficiency.

Organisationseinheit(en)
Institut für Risiko und Zuverlässigkeit
Externe Organisation(en)
Hunan University
The University of Liverpool
Tongji University
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
342
Seiten
509-531
Anzahl der Seiten
23
ISSN
0045-7825
Publikationsdatum
01.12.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Allgemeine Physik und Astronomie, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2018.08.021 (Zugang: Geschlossen)