Seismic damage analysis due to near-fault multipulse ground motion

verfasst von
Guan Chen, Jiashu Yang, Ruohan Wang, Kaiqi Li, Yong Liu, Michael Beer
Abstract

Near-fault pulse-like ground motion is a significant class of seismic records since it tends to cause more severe damage to structures than ordinary ground motions. However, previous researches mainly focus on single-pulse ground motions. The multipulse ground motions that exist in records receive rare attention. In this study, an analysis procedure is proposed to investigate the effect of multipulse ground motions on structures by integrating finite element analysis and an identification method that features each pulse in the multipulse ground motion satisfying the same evaluation criteria. First, the Arias intensity, wavelet-based cumulative energy distribution, and response spectra of identified non-, single-, and multipulse ground motions are compared. Then, the seismic damage on frame structures, a soil slope, and a concrete dam under non-, single-, and multipulse ground motions are analyzed. Results show that the spectral velocity of multipulse ground motions is significantly greater than those of non- and single-pulse ground motions and potentially contains multiple peaks in the long-period range. Seismic damage evaluation indicates that the maximum interstory drift of frame structures with high fundamental periods under multipulse ground motions is about twice that of nonpulse ground motions. Similar characteristics also exist in the soil slope and the concrete dam. Therefore, multipulse ground motions potentially cause more severe damage to structures compared to non- and single-pulse ground motions. The findings of this study facilitate the recognition of the increased seismic demand imposed by the multipulse ground motion in engineering practices, provide new possibilities for ground motion selection in seismic design validation, and shed new light on seismic hazard and risk analysis in near-fault regions.

Organisationseinheit(en)
Institut für Risiko und Zuverlässigkeit
Externe Organisation(en)
Wuhan University
Xi'an University of Architecture and Technology
Hong Kong Polytechnic University
The University of Liverpool
International Joint Research Center for Engineering Reliability and Stochastic Mechanics
Tongji University
Typ
Artikel
Journal
Earthquake Engineering and Structural Dynamics
Band
52
Seiten
5099-5116
Anzahl der Seiten
18
ISSN
0098-8847
Publikationsdatum
06.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Tief- und Ingenieurbau, Geotechnik und Ingenieurgeologie, Erdkunde und Planetologie (sonstige)
Elektronische Version(en)
https://doi.org/10.1002/eqe.4003 (Zugang: Offen)