Towards the NASA UQ Challenge 2019

Systematically forward and inverse approaches for uncertainty propagation and quantification

authored by
Sifeng Bi, Kui He, Yanlin Zhao, David Moens, Michael Beer, Jingrui Zhang
Abstract

This paper is dedicated to exploring the NASA Langley Challenge on Optimization under Uncertainty by proposing a series of approaches for both forward and inverse treatment of uncertainty propagation and quantification. The primary effort is placed on the categorization of the subproblems as to be forward or inverse procedures, such that dedicated techniques are proposed for the two directions, respectively. The sensitivity analysis and reliability analysis are categorized as forward procedures, while modal calibration & uncertainty reduction, reliability-based optimization, and risk-based design are regarded as inverse procedures. For both directions, the overall approach is based on imprecise probability characterization where both aleatory and epistemic uncertainties are investigated for the inputs, and consequently, the output is described as the probability-box (P-box). Theoretic development is focused on the definition of comprehensive uncertainty quantification criteria from limited and irregular time-domain observations to extract as much as possible uncertainty information, which will be significant for the inverse procedure to refine uncertainty models. Furthermore, a decoupling approach is proposed to investigate the P-box along two directions such that the epistemic and aleatory uncertainties are decoupled, and thus a two-loop procedure is designed to propagate both epistemic and aleatory uncertainties through the systematic model. The key for successfully addressing this challenge is in obtaining on the balance among an appropriate hypothesis of the input uncertainty model, a comprehensive criterion of output uncertainty quantification, and a computational viable approach for both forward and inverse uncertainty treatment.

Organisation(s)
Institute for Risk and Reliability
External Organisation(s)
Beijing Institute of Technology
KU Leuven
University of Liverpool
Tongji University
University of Science and Technology Beijing
Type
Article
Journal
Mechanical Systems and Signal Processing
Volume
165
ISSN
0888-3270
Publication date
15.02.2022
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Control and Systems Engineering, Signal Processing, Civil and Structural Engineering, Aerospace Engineering, Mechanical Engineering, Computer Science Applications
Electronic version(s)
https://doi.org/10.1016/j.ymssp.2021.108387 (Access: Closed)