A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

authored by
Yadong Xu, J. C. Ji, Qing Ni, Ke Feng, Michael Beer, Hongtian Chen
Abstract

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.

Organisation(s)
Institute for Risk and Reliability
External Organisation(s)
Nanjing University of Science and Technology
UTS University of Technology Sydney
National University of Singapore
University of Liverpool
Tongji University
Shanghai Jiaotong University
Type
Article
Journal
Mechanical Systems and Signal Processing
Volume
200
ISSN
0888-3270
Publication date
01.10.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Control and Systems Engineering, Signal Processing, Civil and Structural Engineering, Aerospace Engineering, Mechanical Engineering, Computer Science Applications
Electronic version(s)
https://doi.org/10.1016/j.ymssp.2023.110609 (Access: Closed)